
Curling and rolling dynamics of naturally curved ribbons (ESI)

Octavio Albarrán Arriagada,a Gladys Massiera,a and Manouk Abkarian,∗a

1 The critical natural radius a∗0

1.1 The Heavy Elastica Equation

We are interested to find the differential equation that de-
scribes the shape of a ribbon that bends with planar defor-
mations under its own weight. In Fig.1, a schematic of the
problem is presented: one end of the ribbon is immobilized
by fixing its local tangential vector and the other extremity is
left free. We define the natural radius of curvature a0, the tan-
gential angle θ and the arc length position S, which runs from
zero to the full length Sβ of the material.

For static equilibrium, the equations of force and torque are
given by:

∂SF+K = 0 (1)
and

∂SM+ t×F = 0 (2)
where K is the external force per unit of area; F is the internal
force resultant on the cross-section and M is the torque resul-
tant per unit length. For planar deformations, the torques are
connected with the curvature by: M = −B(κ0−κ)e3, where
B is the bending stiffness, κ0 = 1/a0 is the natural curvature
and κ = ∂Sθ = θ

′
is the local curvature.

Fig. 1 Scheme of the static configuration of a ribbon of natural
radius a0 that is deformed by its own weigth.

Solving Eq.1 for the gravitational interaction K=−gσe2 (g
is the gravitational aceleration and σ the surface density) we
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get F = gσ
(
S−Sβ

)
e2, and then, by Eq.2, the general equa-

tion for static equilibrium is found:

θ
′′
+

gσ

B

(
S−Sβ

)
cosθ = 0 (3)

To nondimensionalize, we introduce the parameter χ =
S/Sβ , then eq.3 becomes

d2θ (χ)

dχ2 − (1−χ)

b
cosθ (χ) = 0 (4)

where b = B
σgS3

β

. Because of the origin of the problem,

this equation must be subjected to the boundary conditions:
θ (0) = θ0 and dθ

dχ
(1) =

Sβ

a0
.

1.2 Numerical solution

When the angle θ (χ) and its derivative dθ(χ)
dχ

in χ = 0 are im-
posed, using finite differences method we can easily solve the
Eq.4 numerically. First we aproximate the second derivative,

d2θ

dχ2 ≈
θ (χ +∆χ)−2θ (χ)+θ (χ−∆χ)

∆χ2

and discretize the domain of the solution: χ → χn = n∆χ .
Now, considering θ (χ)→ θn = θ (χn) and ∆χ = 1/N (where
N is the number of intervals of the domain), we get the follow-
ing recursive formula

θn+1 =
1
b

(
1

N2 −
n

N3

)
cosθn +2θn−θn−1 (5)

where n = 1,2,3, ...,N− 1. In order to find the complete nu-
merical solution, we start with the initial values, θ0 and θ1,
that are given by the boundary conditions of the problem.

For the problem of the equilibrium shape of the frustrated
curling, the boundary conditions for rods are θ (0) = θ0 = 0
and dθ(0)

dχ
= 0⇒ θ1 = 0. Thus, with the recursive formula,

for each number b, we have access to the entire angular varia-
tion of the rod. Especially, at the free boundary the curvature
is dθ(1)

dχ
=

Sβ

a0
(which is also the dimensionless natural curva-

ture). In Fig.2 we have plotted the numerical solutions for
the parameter 1/b associated with the normalized curvature
Sβ/a0 (boundary condition at the free end), the graph shows
that 1/b can not be higher than 45.63, otherwise Sβ/a0 be-
comes negative and the solution is not more compatible with
the conditions of the problem.
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For ribbons, the problem is more subtle because the cur-
vature at χ = 0 is given by dθ(0)

dχ
= ν

Sβ

a0
that must be also

compatible with the boundary condition at the free end, which
implies that θ1, θN−1 and θN are explicitly connected:

θ1 = (θN−θN−1)ν

Knowing ν , we run the iterative formula of Eq.5, perform-
ing a searching loop where, for a specific b, the initial estimate
of θ1 will be given by the dimensionless natural curvature of
the associated rod solution. Then, writing the curvature at the
free end as κN (b,θ1), the first iterative solution will be written
θ
(1)
1 = ν

N κN (b,θ1 = 0). Using this same idea we can produce

a better estimate θ
(2)
1 = ν

N κN

(
b,θ (1)

1

)
. Thus, θ

(i)
1 can be im-

proved for any required accuracy using the algorithm:

θ
(i+1)
1 =

ν

N
κN

(
b,θ (i)

1

)
For a ribbon of ν = 0.38, the Fig.3 also shows the relation

between 1/b and Sβ/a0 obtained by means of the numerical
solution.
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Fig. 2 Numerical Solution (with finite differences method) of the
relation between the heavy-elastica constant 1/b and the associated
boundary condition Sβ /a0. The red line is associated with a ribbon
with ν = 0.38.

1.3 The limit for static equilibrium

When a0 is lower than the critical value a∗0, the stored elastic
energy of the ribbon is higher than its gravitational potential
energy and curling starts. However, when a0 & a∗0, the ribbon
adopts a static configuration that we characterize by two vari-
ables: the height Yβ of the free end β of the ribbon, and the

curvilinear length Sβ between the contact with the substrate,
α , and β (see picture in Fig.3B).
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Fig. 3 Image of a ribbon in static equilibrium with gravity (PVC
film 100 µm thick, a0 = 4.0±0.1 cm and W = 3.5 cm). Upper
inset: Numerical solutions for static equilibrium shapes obtained
using Eq.4. Positions are normalized by Sβ . Lower inset:
Equilibrium diagram Yβ /Sβ versus Lg/a0 (a0 > 0.28Lg). Two
solutions are represented one stable, one unstable (dashed line) for
each Lg/a0 (red line obtained for a ribbon with ν = 0.4). On the
plot, letters indicate the shape obtained by the numerical solution.

To deduce the value of a∗0 from the parameters of the static
problem, we used Eq.4.

For an initially horizontal ribbon, using Yβ/Sβ =∫ 1
0 sin(θ)dχ , a first integration of Eq.4 leads to Yβ/Sβ =

b
2 [(Sβ/a0)

2− θ ′(0)2]. Because of the Γ-region, the longitu-
dinal curvature at the point α is given by a0/ν and θ ′(0) =
νSβ/a0. The height of the free border is then given simply by
Yβ = L3

g/24a2
0, where we define the elasto-gravitational length

Lg = (Eh3

gσ
)1/3. Yβ increases with the square of the natural cur-

vature until the critical situation at which the curling proceeds.
We report in the upper inset of Fig.3, different shapes

we obtain from the numerical solution of Eq.4. We report
also in the lower inset of Fig.3, the stability diagram, where
Yβ/Sβ = b

2 (1− ν2)θ ′(1)2 and Lg
a0

= [12b(1− ν2)]
1
3 θ ′(1) are

written in terms of the parameters (b,Sβ/a0) plotted in Fig.3.
For each value of Yβ/Sβ , two solutions are found for two dif-
ferent Lg/a0: one stable (upper solid line) and one unstable
(lower dashed line). No more static solutions are found when
Lg/a∗0 & 3.57.

The critical natural radius a∗0 varies slowly with ν . In the
range, 0.3 < ν < 0.5, a∗0 varies less than 1%. Thus, curling
occurs, in general, only when a0 . 0.28Lg = a∗0. For PVC and
PP ribbons, we find a∗0 equal to 3.8±0.2 cm and 3.7±0.2 cm
respectively, in good agreement with our observations.
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