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1 Additional simulation details

In the main text, the total free energy change for translocating
an AuNP from a solvated state to the center of a lipid bilayer
is decomposed into a sum of several terms:

∆Gtotal = ∆Gphobic +∆Ginsert +∆Eelec +∆Ethick−T ∆Scon f
(1)

The change in solvation free energy, ∆Gphobic, represents
the primary hydrophobic driving force in the system. Physi-
cally, this term is related to both the enthalpic and entropic cost
of exposing hydrophobic surface area to water, which reduces
the number of hydrogen bonds in the system and forces sur-
rounding water molecules into ordered, low entropy states1.
Previous studies have shown that a simple approximation for
the magnitude of this hydrophobic force is to scale the solvent-
accessible surface area, or SASA, by a phenomenological pro-
portionality constant, γ 2–4. We thus simply write:

Gphobic = γSASA (2)

The SASA was calculated for each simulation timestep us-
ing the Shrake-Rupley “rolling ball” algorithm5 using 100
uniformly distributed mesh points per hydrophobic bead and
a probe size of 1.4 Å to represent water solvation. The SASA
was only calculated for hydrophobic beads as free energy
changes related to the hydrophilic beads are captured in the
∆Ginsert term described below. The SASA reflects the unfa-
vorable solvation of hydrophobic surface area by water, so
the presence of the hydrophobic bilayer core and resulting
decrease in solvent density in the core region decreases the
SASA. To model the impact of the bilayer, a solvent density
function, κ(z), was defined as a function of the bilayer cou-
pling parameter λ described in the main text. κ(z) measures
the effective solvent density at a distance z from the bilayer
midplane (z = 0), where z is measured in nm. This function
was approximated from molecular dynamics simulations of
water in DOPC bilayers6,7 as:

κ(z) =


0.0 z≤ 1.3λ

z−1.3λ

1.5λ
1.3λ < z≤ 2.8λ

1.0 z > 2.8λ

All numerical prefactors have units of nm so that κ(z) is
unitless. Recall that λ = h/h0 is the perturbed thickness of the
bilayer at the interface and is also unitless. A plot of κ(z) for
λ = 1 is shown in Fig. 2 of the main text.

The simple linear approximation scales the effective water
density at the position z and we assume scales the SASA as
well, providing a driving force for hydrophobic ligands to pre-
fer the bilayer interior compared to full exposure to aqueous
solvent. The total solvation free energy of the system as a
function of λ is then written as:

Gphobic = γ

beads

∑
i

mesh

∑
j

κ(zi j)Ai j (3)

The first sum runs over all hydrophobic beads in the sys-
tem, while the second sum runs over all mesh points on that
bead. For each mesh point, the SASA was incremented by
an amount κ(zi j)Ai j if the mesh point was not occluded by
another bead in the simulation, where Ai j is the increment of
the accessible surface area per point. The scaling factor κi j
was only applied to ligands exposed to the bilayer, as many of
the ligands would in principle be far from the bilayer region
and thus would not be reasonably expected to be subject to
a reduction in the SASA due to a change in the solvent den-
sity. Ligands were only marked as exposed if the number of
solvent-accessible mesh points summed over all the beads in
the ligand surpassed a threshold value and the location of the
ligand was beyond a radial threshold from the AuNP center.
Figure 2D in the main text provides a plot of the solvent den-
sity in the bilayer region. The total change in solvation free
energy for a given value of λ was calculated by subtracting
the value of Gphobic in the baseline state, where λ = 0.0 and
κ(z) = 1.0 for all z. As discussed in the main text, we chose to
test two different possible values of γ: 28 cal/mol/Å2 8 and 47
cal/mol/Å2 9. As either parameter seems suitable for this work
based on their derivations but their values differ considerably,
the choice of this parameter is explored in the Results section
of the main text.

The change in the free energy associated with exposing
charged ligand end groups to the hydrophobic core of the bi-
layer is ∆Ginsert . Previous implicit bilayer simulations have
treated this term using a generalized Born model where the
bilayer core is treated as a region of low dielectric constant
and electrostatic contributions are calculated accordingly10, or
the bilayer is treated as a region of decreasing solvent density
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based on comparison to simulations of protein side chain ana-
logues11. We adopt a approach similar to the latter model and
approximate the free energy penalty for insertion from free
energy profiles for anion insertion into membranes6,7. The
penalty resulting from this approach then takes into account
free energy changes for observed behavior such as dragging
water molecules into the bilayer environment, some lipid de-
formation, and any electrostatic effects. Furthermore, it di-
rectly accounts for any deviations in water density along the
bilayer normal. The potential adopted is for a negatively
charged side chain analogue in a DOPC bilayer6, the closest
approximation in the literature to the system studied here. The
resulting potential is written as:

f (z) =



20.32− 11.98z
λ

z≤ 1.0λ

8.34− 6.36(z−1.0λ )

λ
1.0λ < z≤ 1.75λ

3.57− 3.40(z−1.75λ )

λ
1.75λ < z≤ 2.80λ

0.0 z > 2.8λ

Here, f (z) is the positive free energy change per ligand in
kcal/mol as a function of z, the distance from the bilayer mid-
plane (z = 0) in nm. The potential is scaled everywhere by
λ to account for changes in the perturbed thickness of the
bilayer. Only charged end groups on ligands marked as ex-
posed to the bilayer, as described above, were subject to the
penalty. Note that each charged end group was considered in-
dependently, although recent results suggest that the addition
of multiple charged side chains leads to a non-additive energy
barrier12. However, here we assume that due to the symmetry
of the spherical AuNP core the bilayer will tend to deform in
a uniform manner to limit charge exposure as captured by the
∆Ethick term, effectively taking into account any cooperative
effects. We thus assume that the resulting charge penalty can
be treated for each end group independently. Figure 2D in the
main text shows a plot of this potential for a value of λ = 1.0.

While ∆Ginsert accounts for electrostatic interactions be-
tween charged end-groups and the bilayer, ∆Eelec accounts
for electrostatic interactions between charged end-groups with
each other. Recent studies have shown that the electrostatic
potential near the surface of charged monolayer-protected
AuNPs can be well-described by Debye-Hückel theory, which
we assume here as well13–15. The electrostatic energy between
ligands is then calculated via a screened Coulomb pair poten-
tial of the form:

ψ(r) =
Q

4πεr
e−r/λD (4)

Here, λD is the Debye length of the system. All simulations
used a Debye length of 0.8 nm corresponding to a physiolog-

ical salt concentration of 0.150 mM. The dielectric constant
was set to 80 for all interactions due to the presence of aque-
ous solvent. To account for the bilayer, the potential between
charges on opposite sides of the bilayer was set to 0 to match
the results of numerical solutions to the non-linear Poisson-
Boltzmann equation near membrane surfaces16,17. All ligand
end groups were assumed to be charged with no possibility for
charge regulation due to the pKa of sulfonate, which has been
measured as approximately -2.8. Based on these assumptions,
the total electrostatic energy in the system is given by:

Eelec =−1.0e∑
i

∑
j>i

ψ (|ri− r j|) (5)

The final energetic component is the penalty for bilayer
thickness deformations around the embedded AuNP. By vary-
ing the value of λ , the bilayer was able to adjust its thickness
to match the particle, a process referred to as hydrophobic
matching in studies of bilayer-protein interactions18. To pe-
nalize thickness deformations away from the equilibrium bi-
layer thickness, we utilize a phenomenological spring model
that has been previously parameterized to the mechanical
properties of known lipids19,20. For DOPC, the deformation
energy in kcal/mol is:

∆Ethick = 202.5(λ −1.0)2R0.815 (6)

Here, R is the radius of a cylindrical inclusion that is cal-
culated from the average radius of the particle and monolayer
in the x-y plane. The bilayer thickness penalty is strictly a
function of λ and thus is not calculated during simulations,
but rather is added to the total system free energy calculated
for each value of λ based on the average value of R calculated
during simulations.

1.1 Free energy calculations using BAR

A major contribution to the total free energy change of inser-
tion is the change in the conformational entropy of the mono-
layer ligands. In the baseline state, the ligands are relatively
free to explore the spherical volume around the AuNP surface;
however, in the embedded state, the significant penalty associ-
ated with the insertion of charged residues reduces the confor-
mational freedom of end-functionalized ligands. To capture
this change in conformational entropy, ∆Scon f , we calculate
the total system free energy change using the Bennett Accep-
tance Ratio (BAR) method21,22. BAR requires the definition
of two thermodynamic states with distinct potential energy
functions such that the energy of a given system configura-
tion can be calculated for either state. Configurations are then
generated separately for each state according to its potential
energy function, but the energy of each configuration calcu-
lated using both states’ potential energy functions is saved.
The total free energy change is then calculated by the relation:
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∆G0→1 = kT
[

ln
Σ1 f (U0−U1 +C)

Σ0 f (U1−U0−C)

]
+C (7)

Here, Σ0 represents a sum over configurations generated
with the potential energy function corresponding to state 0, U0
is the potential energy of each configuration calculated with
potential energy function for state 0, U1 is the potential en-
ergy of each configuration calculated with the potential energy
function for state 1, f (x) is the Fermi function, and C is a con-
stant. The Fermi function is defined as:

f (x) =
1

1+ ex/kT (8)

The constant C is defined as:

C = kT ln
Q0

Q1
(9)

Here, Q0 and Q1 are the partition functions of states 0 and
1 respectively, so solving for the constant C is equivalent to
finding the free energy change between the two states. C is
determined by iteratively solving the equation:

∑
1

f (U0−U1 +C) = ∑
0

f (U1−U0−C) (10)

Comparing eq. 7 and eq. 10 confirms that the value of C that
satisfies eq. 10 is the free energy change between state 1 and
0. The BAR algorithm thus consists of first running simula-
tions to generate configurations for both states 0 and 1, saving
the energy of each configuration calculated using the energy
functions of both states, then self-consistently solving eq. 10
to determine the free energy change after all configurations are
generated.

In this system, a thermodynamic state is defined by choos-
ing a value of λ corresponding to a particular bilayer thick-
ness. The free energy change between state 0 with λ = λ0
and state 1 with λ = λ1 is equivalent to the free energy
change associated with increasing the perturbed bilayer thick-
ness around the embedded AuNP. Setting a value of λ = 0.0
is equivalent to the particle in a completely solvated state with
no bilayer, which defines the reference state for all free en-
ergy changes. For each simulation run, 15 values of the λ

parameter were attempted, incrementing from an initial value
of λ = 0.0 to a maximum value of λ = 1.2. For each value
of λ tested, the simulation was first equilibration for 50,000
Monte Carlo timesteps per bead in the system, then configu-
rations were recorded for 100,000 Monte Carlo timesteps per
bead. Every 20 timesteps the energy of the system was calcu-
lated for both the current and next value of λ and these ener-
gies were saved for later input to Eq. (10). These values were
sufficient to obtain convergence via the BAR algorithm. The
global free energy minimum for a particular simulation as a

function λ was estimated by using a quadratic interpolation
between the intermediate values of λ tested23.

2 Grid point analysis of AuNP conformations

To gain a more accurate picture of the conformational state
of the AuNPs before and after insertion, Figure S1 shows the
average occupancy of all beads of the AuNP (top row) and av-
erage occupancy of just the hydrophilic beads (bottom row)
of a 2.5 nm diameter, 1:1 MUS:OT mixed AuNP in the sol-
vated (left) and inserted (right) states. The average occupancy
is calculated by dividing the simulation box into cubic grid
with a grid separation of 0.1 nm. For each simulation configu-
ration, each bead in the system is checked to see if it occludes
grid points, in which case a counter for that grid point and
bead type is incremented. The graphs show the average of
these counters over all simulation timesteps and further aver-
aged by rotating around the normal to the membrane to yield
a two-dimensional representation of spatial occupancy. The
results show that in the baseline state all beads, including hy-
drophilic beads, are effectively able to explore the full confor-
mational landscape around the AuNP, as would be expected
in the absence of a bilayer perturbing the ligand conforma-
tions. In contrast, upon insertion, the ligand conformations
and thus average occupancies are biased toward the bilayer in-
terface. The top right plot in Figure S1 shows the interesting
result that the actual interface of the monolayer with the bi-
layer core region appears almost planar given the preference
of hydrophobic ligands for the core region. This observation
implies that the embedded AuNP could strongly resemble a
transmembrane protein. The bottom right plot shows that on
average hydrophilic beads strongly prefer the bilayer-solvent
interface, as expected due to the prevalence of ligand snorkel-
ing.

3 Clustering of ligands in baseline state

The clustering of monolayer ligands in the baseline state as
shown in Figure 3 of the main text is driven by the decrease in
the hydrophobic surface area. The extent of clustering is thus
a function of γ , as described in the Simulation Methods. Fig-
ure S2 shows the free energy change associated with changing
γ from an initial value of 0 to 60 cal/mol/Å2 for a 2.5 nm 2:1
MUS:OT particle.. The free energy change is decomposed
into both a component calculated from the SASA, ∆Gphobic,
and an entropic component calculated using the BAR method-
ology, −T ∆Scon f . The increase in the SASA parameter drives
the increase in ∆Gphobic as expected. The entropic free energy
also increases, reflecting the greater drive for ligands to cluster
as the SASA parameter becomes stronger, reducing the num-
ber of low energy configurations in the system. The tendency
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Fig. S1 Representation of average spatial occupancy by all ligand
beads (top row) and just hydrophilic beads (bottom row) for the
baseline and embedded states. The average occupancy was
calculated using a cubic grid as described in the text. Results are
shown for a 2.5 nm diameter 1:1 MUS:OT AuNP.

to cluster is further illustrated by the actual decrease of the
amount of SASA as shown in the blue curve with open sym-
bols. The simulation snapshots in Figure S2 show average lig-
and positions over the simulations corresponding to the γ val-
ues listed. Consistent with the free energy results, clustering is
more apparent for larger values of the SASA parameter. The
two positive values of the SASA parameter shown correspond
to the two experimental values described in the Methods sec-
tion. On the basis of these observations, it is apparent that this
implicit solvent methodology is able to reproduce the ligand
clustering observed in previous molecular dynamics simula-
tions24,25 at a fraction of the computational cost, with γ acting
as a primary tuning parameter in the system.
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