Supporting Information

Fusion Mechanism of Small Polymersomes Formed by Rod-Coil Diblock Copolymers

Yung-Lung Lin,¹ Hung-Yu-Chang,¹ Yu-Jane Sheng^{1,*} and Heng-Kwong Tsao^{2,*}

¹Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C.

²Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, Taiwan 320, R.O.C.

Figure S1. The short-ranged order parameters (S) plotted as a function of rod-block length (x) for R_xC_2 with different equilibrium bond length (r_{eq}).

Figure S2. The formation of an inverted micelle in the adhesion stage of slightly deflated R_5C_2 -polymersomes. Note that the coil blocks have been omitted in this diagram.

Figure S3. The variation of the membrane volume of R_5C_2 -polymersome as a function of P_i (pressure of the inner regime of the polymersome).

Figure S4. The fusion processes of RC-polymersomes formed by RC copolymers with r_{eq} =0.7 and 0.4.