Electronic Supplementary Information (ESI)

Lipase-catalyzed synthesis of azido-functional aliphatic polyesters towards acid-degradable amphiphilic graft copolymers

Wan-Xia Wu, Na Wang^{*}, Bei-Yu Liu, Qing-Feng Deng, Xiao-Qi Yu^{*}

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

Table of contents for supporting information

- *Fig. S1.* ¹H NMR spectrum of 2-azido-1,3-propanediol in CDCl₃.
- Fig. S2. ³C NMR spectrum of 2-azido-1,3-propanediol in CDCl₃.
- Fig. S3. ESI-MS (m/z) of 2-azido-1,3-propanediol.
- *Fig. S4.* ¹H NMR spectrum of 4-propargyloxybutyl vinyl ether in CDCl₃.
- Fig. S5. ¹³C NMR spectrum of 4-propargyloxybutyl vinyl ether in CDCl₃.
- *Fig. S6.* ¹H NMR spectrum mPEG₁₀₀₀-acetal-alkyne of in CDCl₃.
- Fig. S7. ¹³C NMR spectrum mPEG₁₀₀₀-acetal-alkyne of in CDCl₃.
- Fig. S8. ¹³C NMR spectrum mPEG₂₀₀₀-acetal-alkyne of in CDCl₃.
- Fig. S9. 2D-NMR spectra of P(OSu_{0.51}-co-APSu_{0.49}) in CDCl₃.
- Fig. S10. DSC curves of P(OSu-co-APSu).
- *Fig.S11.* DSC curves of the copolyesters from dialkyl diesters and diols with varying chain lengths.
- Fig. S12. GPC traces of mPEG and mPEG-acetal-alkyne.
- *Fig.S13.* FTIR of (A) mPEG₂₀₀₀-acetal-alkyne, (B) $P(OSu_{0.51}-co-APSu_{0.49})$ and (C) $P(OSu_{0.51}-co-APSu_{0.49})-g-mPEG_{2000}$.

Fig.S14. Polydispersity (Mw/Mn) of P(OSu_{0.51}-co-APSu_{0.49})-g-mPEG₂₀₀₀ as a function of

^{*} Correspondence to: Fax./ Tel: + 86 28 85415886

N. Wang (E-mail: wnchem@scu.edu.cn) , X.-Q. Yu (E-mail: xqyu@scu.edu.cn)

hydrolysis time by GPC.

- *Fig.S15.* ¹H NMR spectrum of acid-sensitive degradation of P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ with hydrolysis time in CDCl₃: (A) pH 5.0; (B) pH 7.4.
- *Fig.S16.* TEM micrographs of the P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ micelles at pH7.4 and pH 5.0 with time.
- *Fig. S17.* Size distributions of the P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ micelles at pH7.4 and pH 5.0 with time.
- *Fig.S18*. Emission spectra changes of P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ micelle with pyrene at pH7.4 and pH 5.0 with time.

Fig. S1. ¹H NMR spectrum of 2-azido-1,3-propanediol in CDCl₃.

Fig. S2. ¹³C NMR spectrum of 2-azido-1,3-propanediol in CDCl₃.

Fig. S3. ESI-MS (m/z) of 2-azido-1,3-propanediol.

Fig. S7. ¹³C NMR spectrum mPEG₁₀₀₀-acetal-alkyne of in CDCl₃.

Fig. S 9. 2D-NMR spectra of P(OSu_{0.51}-co-APSu_{0.49}) in CDCl₃: (A) ¹H, ¹H-COSY spectrum; (B) ¹³C, ¹H-HSQC spectrum.

Fig. S 10. DSC curves of P(OSu-*co*-APSu): (A) Cooling runs at 10 °C min⁻¹; (B) Heating runs at 10 °C min⁻¹ for (a) P(APSu), (b) P(OSu_{0.25}-*co*-APSu_{0.75}), (c) P(OSu_{0.36}-*co*-APSu_{0.64}), (d) P(OSu_{0.51}-*co*-APSu_{0.49}), (e) P(OSu_{0.63}-*co*-APSu_{0.37}), (f) P(OSu_{0.78}-*co*-APSu_{0.22}) and (g) P(OSu).

Fig. S11. DSC curves of the copolyesters from dialkyl diesters and diols with varying chain lengths: (A) Cooling runs at 10 °C min⁻¹; (B) Heating runs at 10 °C min⁻¹ for (a) P(OSc-co-APSc), (b) P(OAd-co-APAd), (c) P(OSu-co-APSu), (d) P(OSe-co-APSe), (e) P(BSu-co-APSu), (f) P(HSu-co-APSu) and (g) P(DSu-co-APSu).

Fig. S12. GPC traces of mPEG and mPEG-acetal-alkyne .

Fig.S13. FTIR of (A) mPEG₂₀₀₀-acetal-alkyne, (B) $P(OSu_{0.51}-co-APSu_{0.49})$ and (C) $P(OSu_{0.51}-co-APSu_{0.49})-g-mPEG_{2000}$.

Fig. S14. Polydispersity (Mw/Mn) of P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ as a function of hydrolysis time by GPC.

Fig. S15. ¹H NMR spectrum of acid-sensitive degradation of $P(OSu_{0.51}$ -*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ with hydrolysis time in CDCl₃: (A) pH 5.0; (B) pH 7.4.

Fig. S16. TEM micrographs of the $P(OSu_{0.51}$ -*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ micelles (0.5 mg mL⁻¹) at 37°C in phosphate buffer (0.1 M) under pH 7.4 at 0 day (A); pH 7.4 after 1 day (C); pH 7.4 after 6 days (E) and in acetate buffer (0.1 M) under pH 5.0 at 0 day (B); pH 7.4 after 1 day (D); pH 7.4 after 6 days (F).

Fig. S17. Size distributions of the P(OSu_{0.51}-*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ micelles (0.5 mg mL⁻¹) at 37°C in phosphate buffer (0.1 M) under pH 7.4 at 0 day (A); pH 7.4 after 1 day (C); pH 7.4 after 6 days (E) and in acetate buffer (0.1 M) under pH 5.0 at 0 day (B); pH 7.4 after 1 day (D); pH 7.4 after 6 days (F) determined by DLS.

Fig. S18. Emission spectra changes of $P(OSu_{0.51}$ -*co*-APSu_{0.49})-*g*-mPEG₂₀₀₀ (0.1 mg mL⁻¹) micelle with pyrene (0.25 mg L⁻¹) excited at 335 nm at different time at pH 7.4 (A) and pH 5.0 (B).