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I. GENERIC PROPERTIES OF THE DEFORMATION OF ELASTIC INCLUSIONS

FIG. 1: The elastic deformation of the two principle axes of passive spheroidal inclusion in an infinitely extended homogeneous and

isotropic 3D matrix. Left and right panels shows the behavior in soft and rigid matrices respectively. For the left panel we have

µm/µc = 0.01, for the right panel µm/µc = 30. The cell and matrix Poisson’s ratios are νc = νm = 0.3.

We examine here several generic properties of the deformation of elastic inclusions in solids in order to explain the

origin of the behavior seen in Fig. 2. We consider the constrained deformation, uc
i j, of a (passive) spheroidal inclusion

comprising a uniform and isotropic eigen-strain [1], u0
i j =

1
3 u0δi j, embedded in an infinitely extended matrix. u0

i j is the

strain the inclusion would spontaneously undergo in free space if released from the matrix. In the cellular system, u0
i j

originates form the distribution of actomyosin dipoles in the cytoskeleton according to p0
i j = Cc u0

i j, where we associate

p0
i j to the early-time stresses that the cell exerts into the matrix. According to Eshelby’s theory, the strain in the inclusion

is uniform and given by: uc
i j = ASC−1

m Cc u0
i j (cf. Eq. 1); the stress in the inclusion (cell) is given by, σi j = Cc(uc

i j −u0
i j)

[1, 2]. Hence the larger the extent of the deformation, i.e., the ratio, uc
i j/u0

i j, the smaller the stress resulting in the inclusion

(cell). In our theory, the excess stress Cc(uc
i j − u0

i j) is the driving force for acto-myosin polarization (Eqs. 2, 4), hence

understanding how a passive spheroidal inclusion deforms allows us to explain the behaviors predicted in Fig. 2.

The qualitatively different behaviors seen in Fig. 2 for cells in soft and rigid environments can be understood in terms

of the deformations of the short and long axes of the spheroid. For oblate spheroids, the relative change in the long cell
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axis is given by, δa/a = uc
xx = uc

yy, while the strain of the short axis is given by, δc/c = uc
zz; for prolate spheroids the

opposite is true. Fig. S1 plots the normalized strain components, uc
xx/u0 (in red), uc

zz/u0 (in blue) and the trace, uc/u0

(in black), as a function of the cell aspect ratio. The short axis of the spheroid is designated by solid lines, and the long

axis by dashed lines. Few important conclusions can be drawn from this figure. (i) The matrix better resists deformations

along the long axis of the cell. Indeed, the long axis of the spheroid is seen to deform less than the short axis (dashed

lines are below the solid lines). (ii) The difference between the deformations of the short and long axes increases with

the shape anisotropy of the spheroid – the more flattened or elongated the spheroid is, the smaller the deformation of the

long axis (i.e., the dashed lines show a maximum for r = 1). Thus the long axis of the cell behaves effectively, as a more

rigid direction, where internally generated stresses are better resisted along that direction. These conclusions explain the

tendency of stress fibers to polarize parallel to the long axis of cells [3–5]. Along that direction there is higher resistance

to the development of forces in the cell.

(iii) In a soft matrix the shape anisotropy of the spheroid adds to its overall mechanical stability. Indeed we see that

the trace of the deformation tensor, uc (= δV/V = relative volume change), decreases with the shape anisotropy of the

cell and is maximal for r = 1. That is, round inclusions undergo a larger deformation overall (i.e., larger volume change)

compared to less symmetric structures. Thus, the apparently higher (effective) rigidity along the long axis is not only

reflected in the anisotropy of the strains and stresses of the inclusion (i.e., the differences uc
zz − uc

xx and σ c
zz −σ c

xx), but is

also expressed in the trace of the strain and stress tensors. This is why in a soft environment, shape anisotropy is predicted

to facilitate the generation of larger cellular forces, and why round cells are expected to exert least force, see green/blue

curves in panel b. of Fig. 2. In contrast, (iv) as the matrix rigidity increases it may become rigid enough to suppress

any deformation of the long axis, hence dashed lines in the right panel are close to zero. The major contribution to the

non-monotonic behavior of the trace, uc, is therefore the deformations of the short axes. We see that the short axis of

an oblate spheroid (c) deforms more than those of a prolate spheroid (a), and both geometries are less stable (deform

more) than a sphere. We thus find that a sphere is the most stable structure in a rigid matrix. This explains why cells

embedded in a rigid matrix are predicted to exert largest forces if they are spherical. (v) The contrasting variations of the

strain, along the long and short axes of the cell, with the cell aspect ratio, become equally important when the cell and

matrix have similar rigidities. This explains why in the homogeneous system, the trace, uc, (or the volume change of the

inclusion) is shape-independent, as first noted by Eshelby [2]. It is also the reason why the trace of the dipole-tensor, pss,

is shape-independent when the cell and matrix have comparable magnitude.

We note that our calculations for the passive inclusion, shown in Fig. S1 directly translate to predications for an active

cellular inclusion, that possesses polarizable force-dipoles in its interior. This is because the elastic behavior of an active

inclusion is determined, as we have shown, by the effective moduli, C̃c = (I+ χχχ)Cc, that incorporates cell activity via

the susceptibility tensor, χχχ . Thus, our conclusions above about the relative stiffness of the matrix and cell pertain to the

effective stiffness, µ̃c = (1+χs)µc, rather than to µc. Hence the matrix rigidity, µm, should be regarded relative to, µ̃c, to

validate these predictions.

II. QUANTITATIVE ANALYSIS OF THE POLARIZATION RESPONSE IN FEW SIMPLIFIED SITUATIONS

We examine here how the predicted behaviors seen in Fig. 3 follow from our equations. To this end we consider

a simplified but still relevant situation where Z is an isotropic tensor; this allows us to express the dynamics of the
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polarization response as a simple sum of two exponents. Eq. 6 exhibits the polarization process as a generalized relaxation

process Pi j(t) = [I−Exp(−τ̃ττ−1 t)]Pss
i j , where the characteristic time tensor is given by τ̃ττ = Zτττ . In the special cases where

Z is an isotropic tensor, also τ̃ττ is an isotropic tensor, and similarly to τττ can be written in the form: τ̃i jkl = τ̃v · Iv
i jkl + τ̃s · I s

i jkl ,

where I v
i jkl =

1
3 δi jδkl and I s

i jkl = Ii jkl − 1
3 δi jδkl are two orthonormal tensors [6]. Relevant cases where this applies are the

case where the cell is a sphere, or when the matrix is infinitely soft or infinitely rigid; for these last two cases one

finds, respectively, Z = [I + χχχ]−1 and Z = I. When Z is isotropic, Pi j can be broken into a sum of two exponents:

Pi j = (1−e−t/τ̃v)Iv Pss
i j +(1−e−t/τ̃s)Is Pss

i j ; where the first term describes the time-variations of the trace of the polarization

tensor, and the second term describes the development of the deviatoric part of the polarization tensor. The characteristic

times, τ̃v and τ̃s are generally functions of the cell shape, elastic moduli, and the two susceptibility parameters. To

obtain this simplified expression for Pi j(t), one substitutes (Zτττ)−1 in the generalized tensorial exponent above, using

Exp[Q] = ∑∞
n=0

1
n! Qn, and then exploits the multiplication properties of the two orthogonal tenors, Iv, and Is, namely:

(Iv)n = Iv, (Is)n = Is, IvIs = IsIv = 0.

Next, to simplify our expression for Pi j(t) even more, we note that for small values of χχχ , Z → I, as can be verified from

Eq.9. We thus expand Pi j(t) to first order in powers of χv and χs, as well as in powers of the cell aspect ratio around the

case of a sphere, r = 1, and we find :

Pi j(t)
p0 = χv(1− e−t/τv)gv

i j +χs(1− e−t/τs)gs
i j(r−1)

with

gv
i j = gv δi j

gs
i j = gv gs (δi j −3δizδ jz) and Tr[gs

i j ] = 0

(1)

where gv and gs are functions of the elastic moduli and susceptibility parameters :

gv =
3Em

α1Ec +Em
δi j and gs =

Ec

α2Ec +α3Em
(2)

with α1 =
1+νm

2(1−2νc)
, α2 =

10νm−8
3(1−νm)

and α3 =
(5νm−7)(1+νc)

3(1−ν2
m)

. These equations reflect many of the qualitative features described

above of the polarization response.

(i) Because the trace of the second term in Eq. 1 is zero, the dipole magnitude, p, has no first order in r. Hence p

shows an extremum at r = 1, irrespective of the matrix rigidity, this is nicely seen for the steady-state in panels b and

d of Fig. 2 ; it also expresses the expected result that for spherical cells (r = 1) the polarization is isotropic hence the

order parameter is zero, as seen in panels a and c of Fig. 2. These generic properties are independent of the underlying

polarization mechanism.

(ii) For the isotropic polarization case, χs = 0, thus only the first term in Eq. 1 governs the behavior; gv
i j is an isotropic

tensor hence Pxx(t) = Pzz(t) ∼ [1− exp(−t/τv)]. The trace, P(t), follows similar dynamics, and the order parameter,

S(t) = 0. Note that no shape effect can be observed in this case, since the r-containing term in Eq. 1 is zero.

(iii) For the orientational polarization case, χv = 0, and only the second term in Eq. 1 governs the behavior. This

term is shape-dependent, and vanishes for r = 1. As can be verified from our expression for gs
i j (Eq. 1), one has:

Pzz(t) = −2 Pxx(t) ∼ [1− exp(−t/τs)]; this corresponds to a net rotation of the force-dipoles from the x− y plane to the

z direction, or vice versa, as shown in panel II.a. Another way to see this is that the trace, Tr[Pi j(t)] = P(t) = 0, i.e., no

change in the magnitude of the dipole is expected for an orientational response (panel II.b).
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(iv) For an axial-polarization, one has χs = χv, and both terms of Eq. 1 contribute to the dynamics. For τv < τs, the first

term dominates at early times, hence, an initial isotropic response is expected, with a characteristic time approximately,

τv. This corresponds to an initial strengthening of the interaction between myosin and actin in response to the stresses

that develop in the cell. At longer times, the response in one direction (z–for a prolate spheroids, x− y–plane for oblate

spheroids) takes over, and the cell gradually polarizes with a characteristic time, ≈ τs. This can be interpreted as a late

orientational response. In contrast, when τs < τv, the second term in Eq. 1 dominates at early times, hence an initial

orientation of the dipoles (from the z-direction to the x− y plane, or vice versa) is expected, with a characteristic time,

≈ τs. At longer times, an isotropic response begins to dominate, hence the magnitude of the dipolar forces increases with

equal rate (given approximately by τv) in all directions, as seen in panel III.a. These two phases in the response are nicely

shown in the behavior of p(t) and S(t) (panels III.b and III.c). In the former case (red lines), the initial rise in p(t) is

dictated by τv. Hence τv may be interpreted as the characteristic time for the increase in the magnitude of the dipole tensor.

In contrast, the initial rise of S(t), is dictated by τs. Hence, τs, may be interpreted as the characteristic orientational-time.

This discussion for the simplified case where χs and χv are small, was helpful for interpreting the (physical) function

of the four susceptibility parameters χs, χv, τs and τv in the polarization dynamics. Similar trends can be obtained for

cells in infinitely rigid matrices or in perfect spheres. However, in the more general cases, τ̃s and τ̃v are shape and matrix

rigidity dependent, as demonstrated and discussed in section 3.3.
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