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FIG. S1: (A) Elastic (Fel) and surface anchoring (Fs) contributions to the total free energy as a

function of θ for weak tangential anchoring (w = 0.4) (see main text for details). (B) Ultra-weak

tangential anchoring w = 0.004 , Fel . 10−8. Aspect ratio k = 5 .
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Supplementary Note 1

Weak and ultra-weak anchoring

Our main goal here is to provide additional information to explain the parabolic shape of

the curves displayed on Fig. 4 of the main text.

Tangential anchoring. As mentioned in the main text, Brochard and de Gennes [54]

predicted that, for a thin rod immersed in a nematic phase with strong non-degenerated

tangential anchoring, the elastic free energy Fel scales as θ2, where θ is the angle between

the rod long axis and the far field director n̂ . The experiments of Lapointe et al. confirmed

this behavior [52]. The solid black line on Fig. 4 indicates that this θ2 law seems to hold

as well for weak degenerate anchoring (w = 0.4). The reason becomes clear if we analyse

the contributions from the bulk elastic free energy Fel (the first integral in Eq. (1) minus

the bulk free energy of a uniform nematic) and the surface anchoring free energy Fs (the

second integral in Eq. (1)), which are both plotted in Fig. S1(A) as solid and dashed lines,

respectively. We see that, even for w = 0.4 , the bulk nematic distortions are still significant

and Fel dominates Fs for all θ values (except at θ = 0 where the two curves join). This

result qualitatively explains the quadratic form of the solid black curve shown in Fig. 4.

Eventually, as the anchoring strength decreases even further, the bulk nematic distortions

should fade away and the total free energy should be determined by the surface anchoring

term only. Its contribution can be readily estimated within the Frank-Oseen model, where

the surface free energy may be written in the form Fs = W
2

∫

∂Ω
(n · ν)2ds . Here, ν denotes

the surface unit normal vector and W > 0 (resp. W < 0) describes a tangential (resp.

homeotropic) anchoring. For W ≪ 1 , the far-field director n̂ is only slightly distorted by

the presence of a colloidal particle. Assuming n̂ along the z−axis, the Frank-Oseen elastic

free energy (in the one-elastic-constant approximation, K) may be approximated as [54]:

Fel ≃
K
2

∫

d3r [(∇nx)
2 + (∇ny)

2] , where (nx, ny, 0) describes deviations of the local director

from n̂ . Consequently, for nx,y ≪ 1 , the leading contribution, Flead , to the free energy

stems from the surface term, i.e., Flead = W
2

∫

∂Ω
(νz)

2ds . We may approximate a large-k

ellipsoid by a cylinder with radius R , then Flead is readily integrated giving

Flead = πWkR2

(

sin2 θ +
cos2 θ

k

)

, (1)
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where θ is the angle between the cylinder axis and n̂ . For k → ∞ (with kR → cst), the

term cos2 θ
k

, describing the cylinder ends effects, may be dropped yielding Flead ∝ W sin2 θ .

Eq. (1) is valid for large θ too, and it agrees quite well with the numerical results displayed

in Fig. S1(B), which are obtained for an ultra-weak anchoring strength (w = 0.004).

Homeotropic anchoring. It is rather surprising that a similar θ2 behavior is also observed

for the case of homeotropic anchoring, be it weak (see red dashed curve on Fig. 4) or strong

(see open symbols around the global minima at θ = π/2 on Figs. 2 & 3). We think that

sharp deviations from the quadratic regime, reflected by the onset of a free energy barrier

at small θ, and the rich free energy landscape are mainly caused by the interplay of the

shape anisotropy and the topological defects induced by homeotropic boundary conditions.

Supplementary Note 2

Model parameters and the numerical procedure

As mentioned in the main text, we used the Landau-de Gennes theory to compute the total

free energy related to the immersion of prolate ellipsoidal particles in a nematic phase. We

here provide additional information about some variables defined in Eqs. (1)-(3) of the main

text and outline the numerical procedure.

It is convenient to define the dimensionless temperature τ = 24ac/b2. At τ < 1 the

uniaxial nematic is stable and the degree of orientational order is given by

Qb =
b

8c

(

1 +

√

1 −
8τ

9

)

. (2)

The nematic becomes unstable at τ > 9/8. At τ = 1 both the nematic and the isotropic

phases coexist. We use the following values of the model parameters: a0 = 0.044 × 106 J

/Km3, b = 0.816 × 106 J/m3, and c = 0.45 × 106 J/m3, T ∗ = 307 K, L1 = 6 × 10−12J/m

(these are typical values for 5CB [70]), and for simplicity we put L2 = 0 . The spatial

extension of inhomogeneous regions and the cores of topological defects is of the order of

the bulk correlation length, ξ , given by ξ = (8c (3L1 + 2L2) /b2)
1/2

≃ 10nm at the nematic-

isotropic (NI) transition [71]. The LdG elastic constants L1 and L2 may be related to the FO

elastic constants, K1 = K3 and K2, through the uniaxial ansatz Qij = 3Qb (ninj − δij/3) /2,

yielding K1 = K3 = 9Q2
b(L1 + L2/2)/2 and K2 = 9Q2

bL1/2 [72]. In general, K1 and K3
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are different, but in most cases the difference is small and the LdG free energy is deemed

adequate.

We minimize the Landau-de Gennes free energy (Eq. (1), main text) numerically by using

adaptive finite elements methods. Initially, the surface of a colloidal particle is triangulated

using Open Source GNU Triangulated Surface (GTS) library [73]. Then, the triangulation

of the nematic domain Ω is carried out using Quality Tetrahedral Mesh Generator [74],

which supports the adaptive mesh refinement. Linear triangular and tetrahedral elements

are used in 2D and 3D, respectively. Generalized Gaussian quadrature rules for multiple

integrals [75] are used in order to evaluate integrals over elements. In particular, for

tetrahedra a fully symmetric cubature rule with 11 points [76] is used, and integrations

over triangles are done by using a fully symmetric quadrature rule with 7 points [77]. The

discretized Landau-de Gennes functional in then minimized using the National Institute

for Research in Computer Science and Control M1QN3 [78] optimization routine, which

implements a limited memory quasi-Newton technique of Nocedal [79]. More details on the

numerical implementation can be found in ref. [80].

We only consider cylindrically symmetric ellipsoidal particles with semi-axes (A,B,B) ,

where A (resp. B) is the semi-long (resp. semi-short) axis. Particles with aspect ratio

k ≡
A
B

= 3, 5, 7 , and with a fixed volume V = 4
3
πR3

0 are analyzed. In the single particle

case, we use R0 = 0.3 µm. In the case of two ellipsoids, we study only the case k = 5 , and

set B = 0.1 µm.
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