Electronic Supplementary Information

for

High length-diameter ratio nanotubes self-assembled from facial

cyclopeptide

Si-Yong Qin, Hua-Fang Jiang, Xiang-Ji Liu, Yi Pei, Han Cheng,^{*} Yun-Xia Sun,

Xian-Zheng Zhang^{*}

Experimental Section

1. Materials

N-Fluorenyl-9-methoxycarbonyl protected L-amino acids (L-Fmoc-Gln(Trt)-OH, L-Fmoc-Glu-OAll, L-Fmoc-Lys(BOC)-OH) and D-amino acids (D-Fmoc-Ala-OH, D-Fmoc-Leu-OH), 2-chlorotrityl chloride resin (100-200 mesh, loading: 1.1 mmol/g, 1% DVB), Rink Amide-AM resin (100-200 mesh, loading: 0.59 mmol/g, 1% DVB), O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (HBTU), 1-hydroxybenzotriazole (HOBt), and piperidine were provided by GL Biochem (Shanghai) Ltd. (China) and used as received. Trifluorocaetic acid (TFA), Triisopropylsilane (TIS), and 1,2-ethanedithiol (EDT) were purchased from Shanghai Reagent Chemical Co. (China). Pd(PPh₃)₄ and N-Methylmorpholine (NMM) were purchased from ACROS (USA) and used without further purification. Trifluorocaetic acid (TFA), Diisopropylethylamine (DIEA), dimethylformamide (DMF) and chloroform (CHCl₃) were distilled before used. All other reagents and solvents were used without further purification.

2. Synthesis of the linear peptide

The linear peptide NH_2 -*D*-Leu-*L*-Lys-*D*-Ala-*L*-Lys-*D*-Leu-*L*-Gln-COOH (named as LP) was synthesized manually following the manual Fmoc solid phase peptide synthesis (SPPS) method.^[S1] 1.0 g 2-chlorotrityl chloride resin was placed in a peptide synthesis vessel, swelled with DMF for 30 min and washed with DMF for three times. The *L*-Fmoc-Gln(Trt)-OH was loaded on the resin and then other amino acids were conjugated onto it. The coupling of the first residue was carried out with 2 equiv. of *L*-Fmoc-Gln(Trt)-OH (relative to the resin substitution degree) and 10 equiv. of DIEA in a DMF solution. Coupling cycle of the linear peptide consisted of, a) Fmoc group

deprotection (20% piperidine/DMF, 2 x 15 min), b) DMF wash (4 x 1 min), c) amino acid coupling with 2 equiv. of *D/L* Fmoc-protecting amino acid, 2.4 equiv. of HBTU and HOBt, and 6 equiv. of DIEA for 2 h, and d) DMF wash (3 x 1 min). Kaiser reagent was employed to examine the completion of reaction. After the completion of the peptide synthesis, the peptide-containing resin was washed with DMF, methanol (MeOH), and methylene chloride (DCM) three times, respectively. The resin was finally dried under vacuum overnight. Peptide was generally de-protected and cleaved from the resin by a modified TFA cleavage procedure (TFA/H₂O/TIS/EDT=94/2/2/2, 2 h at rt). After the filtration to remove the solid support, the solution was concentrated by rotary evaporation and the peptide was precipitated by addition of cold diethyl ether (Et₂O). The precipitate was centrifuged and washed with Et₂O.

3. Synthesis of the cyclopeptides

The cyclopeptide c-[D-Leu-L-Lys-D-Ala-L-Lys-D-Leu-L-Gln] (named as CP) and other cyclopeptides (c-[D-Leu-L-Gln-D-Leu-L-Gln-D-Leu-L-Gln] two and c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln]) were also synthesized via manual SPPS but based on Rink Amide-AM Resin.^[S2] Typically, 1.0 g Rink Amide AM Resin was swelled as above. Different from the 2-chlorotrityl chloride resin, Amide AM resin should be deprotected before the coupling. Fmoc group was removed from the resin with 20% piperidine/DMF (2 x 20 min). After the draining from the resin, the residual piperidine was washed with DMF for four times. Fmoc-Glu-OAll (2 eq) was firstly assembled to the resin with 2.4 equiv. of HBTU and HOBt, and 6 equiv. of DIEA for 2 h, then the resin was washed with DMF (3 x 1 min). Cycle coupling was carried out as above. After the completion of the linear peptide synthesis, the C-terminal protecting group (All) of Glu was removed by 2 equiv. of Pd(PPh₃)₄ with CHCl₃:AcOH:NMM=37:2:1 (15 mL/g of resin),^[S3] and the mixture was stirred under Ar at room temperature for 24 h. After removing the solution, the resin was washed with CHCl₃ (6 x 1 min), 0.5% DIEA in DMF (6 x 1 min), 5% HoBt in DMF (6 x 1 min), DMF (6 x 1 min), respectively. The N-terminal protecting group (Fmoc) was removed with 20% piperidine/DMF, and then washed with DMF (6 x 1 min). The peptide was cyclized by adding 3 equiv. of PyBOP and HoBt (3.0 eq.) and 8 equiv. of DIEA in DMF (coupling reagent concentration at 0.5 M), followed by stirring for 3 days. Kaiser reagent was employed to examine the completion of reaction. After filtration and washing with DMF (3 x 1 min), MeOH (3 x 1 min), CH₂Cl₂ (3 x 1 min), the resin was dried under high vacuum. Deprotection and cleavage of cyclopeptides from the resin were carried out as above.

4. Characterization of the peptides

The molecular weight of peptides was analyzed by electrospray ionization mass spectrometry (ESI-MS, LCQ Advantage, Finigan, USA) in a component solvent of Acetonitrile and MeOH at a concentration of 0.5 mg/mL. The theoretical molecular weights of LP and CP are 699.5 and 681.5, which found in ESI-MS were [M-H]⁻ at m/z 699.1, $[M-H+M_{(TFA)}]^{-}$ at m/z 812.9, $[M-H+2M_{(TFA)}]^{-}$ at m/z 928.7 and a series of double molecular weight peaks in LP (Fig. S2), and m/z at 682.4 corresponding to $[M+H]^+$ in CP (Fig. S3). The theoretical molecular weights of c-[D-Leu-L-Gln-D-Leu-L-Gln] and c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln] are 723.4 and 643.3, which found in ESI-MS are $[M-H+M(_{TFA})]^{-}$ at m/z 836.4 for c-[D-Leu-L-Gln-D-Leu-L-Gln] (Fig. S4), and [M-H]⁻ at m/z 642.4, $[M-H+M(_{TFA})]^{-}$ at m/z 756.0 and $[2M-H]^{-}$ at m/z 1285.2 for c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln] (Fig. S5).

5. Transmission electron microscopy (TEM) observation of the peptide self-assemblies

The morphology of peptide self-assemblies was observed by transmission electron microscopy (TEM, JEM-2010, Japan) with an accelerating voltage of 100 kV. 2 mg of cyclopeptide was dissolved in 2 mL of de-ionized water and 0.1 M NaOH or HCl was added to adjust the pH value to ~6.5, the solution was stood for one day for the self-assembly. The samples were prepared by dipping a copper grid with carbon film into the solution. After the deposition for 1 min, the remaining solution was removed and the samples were dried under an infrared lamp for the observation under TEM.

6. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectroscopy investigation of the peptide self-assemblies

CD spectra of the peptide self-assemblies were carried out on a J-810 spectropolarimeter (Jasco, Japan) with 1 mg/mL peptide solution. FT-IR spectra of the self-assemblies were performed on an AVATAR 360 spectrometer. The freeze-dried peptide self-assemblies were pressed into pellets with potassium bromide (KBr) for the measurements.

7. Wide-angle x-ray diffraction (WXRD) of the peptide nanotubes

The X-ray diffraction pattern of CP tubes was obtained by a Shimadzu XRD-6000 diffractometer with a Ni filter and Cu K α 1 (current =40 mA, voltage=40 kV, λ =1.54056 Å).

8. Thermogravimetric analysis (TGA) of the peptide nanotubes

The thermal stability of CP tubes was investigated by a thermogravimetric analyzer (NETZSCH Jupiter® STA 449C, USA). The TG measurement was carried out under a stream of nitrogen with a heating rate of 20 $^{\circ}$ C min⁻¹ (purging rate: 40 mL min⁻¹). The curve was collected from 40 $^{\circ}$ C to 600 $^{\circ}$ C.

References

- [S1] S. Y. Qin, X. D. Xu, C. S. Chen, J. X. Chen, Z. Y. Li, X. Z. Zhang and R. X. Zhuo, *Macromol. Rapid Commun.* 2011, **32**, 758.
- [S2] C. Qin, C. Xu, R. Zhang, W. Niu and X.Shang, Tetrahedron Lett. 2010, 51, 1257.
- [S3] L. R. Lampariello, D. Piras, M. Rodriquez and M. Taddei, J. Org. Chem. 2003, 68, 7893.

CP: c-[D-Leu-L-Lys-D-Ala-L-Lys-D-Leu-L-Gln]

LP: D-Leu-L-Lys-D-Ala-L-Lys-D-Leu-L-Gln

c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln]

Fig. S1 Chemical structures of cyclopeptide (CP), linear peptide (LP), and two analogous cyclopeptides (c-[*D*-Leu-*L*-Gln-*D*-Leu-*L*-Gln] and c-[*D*-Leu-*L*-Cys-*D*-Ala-*L*-Asp-*D*- Leu-*L*-Gln]).

Fig. S2 ESI-MS of the synthesized LP. [M-H] at m/z 699.1, [M-H+M $_{(TFA)}$] at m/z 812.9, [M-H+2M $_{(TFA)}$] at m/z 928.7 and a series of double molecular weight peaks were observed.

Fig. S3 ESI-MS of the synthesized CP. $[M+H]^+$ at m/z 682.4 was observed.

Fig. S4. ESI-MS of the cycloeptide: c-[D-Leu-L-Gln-D-Leu-L-Gln-D-Leu-L-Gln]. [M-H+M(_{TFA})]⁻ at m/z 836.4 was observed.

Fig. S5 ESI-MS of the cycloeptide: c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln]. [M-H]⁻ at m/z 642.4, [M-H+M(_{TFA})]⁻ at m/z 756.0 and [2M-H]⁻ at m/z 1285.2 were observed.

Fig. S6 TEM image of the self-assembled LP in aqueous solution (1.0 mg/mL) at pH around 6.

Fig. S7 TEM images of the self-assembled nanofibers obtained by c-[D-Leu-L-Cys-D-Ala-L-Asp-D-Leu-L-Gln].

Fig. S8 WXRD curve of the self-assembled CP nanotubes.

Fig. S9 TEM images of cyclopeptide tubes formed via pathway I, in which the cyclopeptide units firstly self-assembled into nano-ring seeds and further spontaneously organize into nanotubes. Some defects and bulges (marked by red cycles) were found in the self-assembled tubes.

Fig. S10 TG curve of the self-assembled CP nanotubes.