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1 Aboov-Weaire law

In a cellular packing where all vertices are three-edge coordi-

nated, the coordination number of nearest adjacent neighbors

are correlated and can be described by the empirical Aboav-

Weaire law1:

〈zn.n.(z)〉 ≈ A+B/z, (1)

where z is the coordination number of a given cell and zn.n.
is the coordination number of its neighbor. The 〈...〉 notation

means averaging over all cells in the packing. As shown in

Fig. 1, this also holds for the packings used in this work.
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Fig. 1 The topological correlations from cell packings used in our

simulations are represented by the blue squares. Z is the number of

neighbors for a cell, and 〈Zn,n〉 is the average number of neighbors

of the nearest neighbors. The solid blue line is fitting using

Aboav-weaire law, with A and B as fitting parameters

† Electronic Supplementary Information (ESI) available: [details of any

supplementary information available should be included here]. See DOI:

10.1039/b000000x/
∗ Department of Physics, Syracuse University, Syracuse, NY 13244, USA Fax:
+1 315 443 9103; Tel: +1 315 443 3920; E-mail: mmanning@syr.edu
b Syracuse Biomaterials Institute, Syracuse, NY 13244, USA

Therefore, for the four cells involved in a T1 transition la-

beled S1,S2,E1 and E2, their topologies are not independent

from each other. Statistically, given ZS1 and ZS2 it is possible

to determine ZE1 and ZE2.

2 Trap Model for glases

The trap model for glasses2 models a system with a complex

potential energy landscape, that is captured by a quenched dis-

tribution ρ(Δu). The simple assumption is that the evolution

between different metastable states occur via activated pro-

cesses. The probability for a state to be in trap labeled by Δu
at time t, P(Δu, t), evolves according to the master equation2:

d
dt

P(Δu, t) =−ω0e−Δu/ε P(Δu, t)+ω(t)ρ(Δu). (2)

In Eq. (2), the first term on the r.h.s. is the rate of escape

from trap labeled by Δu. This is modeled as an activated pro-

cess where the fluctuation is given by ε . In thermal systems

ε = kBT . ω0 is an inherent attempt frequency which is as-

sumed to be independent of ε . The second term on the r.h.s.

of Eq. (2) is the rate of entering a trap with Δu, where a time

dependent attempt frequency is given by

ω(t) = ω0

∫ ∞

0
dΔuP(Δu, t) e−Δu/ε . (3)

The rate of entering includes ρ(Δu) which is the underlaying

distribution of the trap depth Δu in the potential energy land-

scape.

Here we chose the form of ρ(Δu) from the simulation result

of the main text

ρ(Δu) =
1

ε0
e−Δu/ε0 . (4)

2.1 Steady state solution

For this work we are interested in the steady state solution to

Eq. (2) which is given by

fss(Δu) =
ε − ε0

ε ε0
e−Δu(1−1/x) (5)
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where x = ε/ε0. For x < 1 the system is glassy, since Eq. (5) is

not normalizable. For x > 1 which is normalizable only when

x ≥ 1. The steady state distribution (Eq. 5 in main text) can

also be written in terms of the trapping time τ̃ , which is the

inverse of the escape rate τ̃ = eΔu/x

gss(τ̃) = fss(Δu)
dΔu
dτ̃

∝ τ−x. (6)

2.2 Two-time correlation function

We also study dynamics of the trap model in terms of two-time

correlation for a particle starting in one trap at time t = 0 and

remaining in the same at t. The probability that a state is in

a trap labelled by Δu at t = 0 will stay in the same state Δu
at time t is given by the homogeneous part of the solution of

Eq. (2):

F stay
Δu (t) = fss(Δu)exp

[
−ω0e−Δu/xt

]
. (7)

A two-time correlation function can be defined by including

the contribution from all initial traps Δu,

ctrap(0, t) =
∫ ∞

0
dΔuF stay

Δu (t) =
x−1

(ω0t)x−1

∫ ω0t

0
dw wx−2e−w.

(8)

A plot of ctrap(0, t) for different values of x = ε/ε0 is shown

in Fig. 3(a) of the main text.

3 Soft Glassy Rheology model for tissues
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Fig. 2 A schematic of the model for glassy dynamics in tissues. Δu
labels the trap (represented by the black dot with arrow). bt is the

amount of energy generated as the cell moves in a directed manner.

Following the ideas of Soft Glassy Rheology3, we model

self-propelled, directed motion in a simple way, by assum-

ing the cell generates energy at a constant rate b that allows

it to traverse the Potential Energy Landscape. At time t, di-

rected cell motion has consumed energy ∼ bt, bringing it

closer to a T1 rearrangement, and making the effective barrier

height Δu− bt. There is also a finite probability for it to un-

dergo a rearrangement due to non-directed fluctuations in its

shape; we describe this as an activated process controlled by a

temperature-like parameter ε . Then the rate for overcoming a

barrier at time t can be written as

R = ω0 exp [−(Δu−bt)/ε] . (9)

After escaping a trap with the rate given in Eq. (9), the T1

four-cell region enters into a new trap chosen from the distri-

bution ρ(Δu). A master equation can be written3 to describe

the evolution of the four-cell T1 location:

∂
∂ t

P(Δu, t) =−ω0e−[Δu−bt]/ε P(Δu, t)

+ρ(Δu)
∫

dΔu′ω0e−[Δu′−bt]/ε P(Δu′, t),
(10)

where P(Δu, t) is the probability that T1 location is in trap

labeled by Δu at time t. On the r.h.s., the first term describes

the rate of hopping out of a trap and second term is the total

rate of entering trap with Δu, which is proportional to ρ(Δu),
the distribution of choosing a new trap.

Equation 10 can be rewritten in terms of non-

dimensionalized time s = ω0t and energy u = Δu/ε0

∂
∂ s

f (u,s) =

− e−(u−Bs)/x f (u,s)+ e−u
∫

du′e−(u′−Bs)/x f (u′,s)
(11)

where we have also introduced the dimensionless parameters

B = b/(ω0ε0) and x = ε/ε0.

The steady-state solution of Eq. 11 is the same as the result

for the trap model Eq. (5):

fss(u) = (1−1/x)e−u(1−1/x), (12)

which is not normalizable for 1< 1/x or ε > ε0. This indicates

a glass transition at ε = ε0.

The probability that a T1 location with u at s = 0 will stay

in the same state u at time s is given by the homogeneous part

of the solution of Eq. (11):

F stay
u (s) = fss(u)exp

[
− x

B
e−u/x(eBs/x −1)

]
. (13)

A two-time correlation function can be defined by including

the contribution from all traps depths u,

csgr(0,s) =
∫ ∞

0
du F stay

u (t) =
x−1

y(s)x−1

∫ y(s)

0
dw wx−2e−w,

(14)

where y(s) = x
B

(
eBs/x −1

)
. We can define a caging time as

the value of τ such that Csgr(0,τ) = e−1. The dependence of

τ on x = ε/ε0 and B = b/(ω0ε0) is plotted in Fig. 3.
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Fig. 3 Eq. (14) is used to define a caging time τ , such that

c(0,τ) = e−1, as a function of the two dimensionless parameters of

the model.
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