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Sections 1–3 give an extended discussion of the Theory section of the main paper, i.e. on the hydrodynamic model and its

consequences for the diffusion coefficient. The case of an ideal gas is discussed in detail since it is partially amenable to an

analytical treatment. Section 4 summarizes the main relations of a dynamical model for gravitating particles trapped at fluid

interfaces (gas of capillary monopoles) which has been developed by the authors in previous years. Section 5 presents more

details on the simulations, with an emphasis on the discussion of fixing parameters in the Lattice–Boltzmann simulations.

1 The hydrodynamic model

The hydrodynamic model described by Eqs. (2-4) is based on the so-called Faxén law [1] for the motion of a sphere in a fluid at

low Reynolds number1: if a rigid sphere of radius a moves with velocity v under the action of an external force f while immersed

in an ambient Stokes flow u(r) (which is induced by sources outside of the particle), then it holds exactly

v = Γf+

(

1+
a2

6
∇2

)

u(rc), (1.A)

with Γ = 1/(6πηa) and rc := position of sphere center. The effect of the hydrodynamic interactions is modeled by an effective

ambient flow field u(r) determined by the rest of the particles in the system. We employ a mean–field–like approximation by

which it is assumed that this field is smooth on the microscopic scale (and thus the term a2∇2u in Eq. (1.A) is negligible, giving

Eq. (3)), and u(r) is determined self–consistently as a functional solely of a smooth density field ρ(r), thus neglecting explicit

account of interparticle correlations. The simplest approximation for this functional dependence is obtained when the effective

ambient flow represents a Stokes flow induced by the forces driving the particles, i.e.,

η∇2u−∇p =−ρ(r)f(r), ∇ ·u = 0, (1.B)

where p is the pressure field enforcing the incompressibility constraint. This equation is complemented with the boundary

condition that the ambient flow field is absolutely integrable, in which case the solution is given by Eq. (4) in terms of the Oseen

tensor, which is the Green function for our boundary value problem. That is, only the force monopole of the particles is retained

explicitly for computing the hydrodynamic interactions because it provides the source of the dominant far–field contribution [1].

This approximation deserves several remarks:

• The proposed boundary value problem has a solution only if the total external force acting on the system vanishes,∫
d3r ρ(r)f(r) = 0. (1.C)

This is the case for a thermodynamic generalized force due to particle–particle interactions (by the principle of action–

reaction) or to thermal motion when the density field is homogeneous at infinity (because ρfthermal ∝ ∇ρ). The effect of a

net force has to be accounted for by means of an ambient flow that does not vanish at infinity (for instance, the so-called

“backflow” in the problem of sedimentation under the action of gravity, see, e.g., Refs. [2, 3]).

1The restriction to a sphere is made for simplicity. The basic idea of the approximation can be applied for arbitrarily shaped rigid particles by the corresponding

generalization of the Faxén law.
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2 THE DIFFUSION COEFFICIENT

• If the thermodynamic generalized force can be derived from a free energy functional F [ρ],

f(r) =−∇
δF

δρ(r)
, (1.D)

Equations (2–4) become a simple version of the dynamic density functional theory extended to include hydrodynamic

interactions as presented recently in Ref. [4] (the model presented in that work incorporates the effect of hydrodynamic

interactions at the Rotne–Prager level, rather than at the simpler Oseen level, as in our model).

• The mean–field–like approximation embodied in Eq. (1.B) can be justified easily in the dilute limit, when interparticle

correlations are weak anyhow. Beyond this limit, the approximation also holds actually in the “macroscopic regime” of

small gradients valid to address the large–scale, long–time evolution, provided Γ and η are interpreted as effective, possibly

density–dependent rheological coefficients different from their bare (dilute–limit) values (see Refs. [5, 6]).

2 The diffusion coefficient

The 2D Fourier transform of the density is defined as

δρk =

∫
d2r e−ik·rδρ(r), δρ(r) =

∫
d2k

(2π)2
eik·rδρk, (2.A)

and similarly for the other fields, whereby k is a vector in the reciprocal 2D space. Equation (5) can be written now as

∂δρk

∂t
≈ ρhom ik · [Γfk +uk] , (2.B)

whereas the convolution in Eq. (4) is written after linearization as

uk ≈ ρhom

8πη
fk ·

∫
d2x e−ik·xG(x). (2.C)

Combination of Eqs. (2.B,2.C) gives (in component form)

∂δρk

∂t
≈ Γρhom

2

∑
α,β=1

ikα(fk)β

[

δαβ +
ρhom

8πηΓ

∫
d2x e−ik·xGαβ(x)

]

. (2.D)

In the absence of hydrodynamic interactions, the dynamics of the system is assumed diffusive, so that consistently with the

“large–scale, long–time” nature of the model, the (perturbation in the) force is proportional to the density gradient,

fk ≈ D0(k)

ρhomΓ
(−ik)δρk, (2.E)

with a proportionality coefficient D0(k) that represents the wave number dependent diffusion coefficient in the absence of hydro-

dynamic interactions. When Eq. (2.E) is inserted in Eq. (2.D), the latter becomes Eq. (1) with a diffusion coefficient

D(k) = [1+ g(k)]D0(k), (2.F)

and g(k) given by Eq. (6). The function g(k) can be most easily computed by introducing the 3D Fourier transform of the Oseen

tensor [1],

Gαβ(x) =

∫
d3q

(2π)3
eiq·x 8π

q2

[

δαβ −
qαqβ

q2

]

, (2.G)

with the 3D reciprocal vector q = (q‖,qz), in terms of the 2D projection q‖ and the vertical component qz. Since x represents a

position in the plane z = 0, one has q ·x = q‖ ·x, and when Eq. (2.G) is inserted in the definition (6) the integral over x evaluates

to a 2D Dirac delta δ(k−q‖), so that

g(k) =
1

2πLhydro
∑
α,β

kαkβ

k2

∫ +∞

−∞

dqz

2π

8π

k2 + q2
z

[

δαβ −
kαkβ

k2 + q2
z

]

=
2

πLhydro

∫ +∞

−∞
dqz

q2
z

(k2 + q2
z )

2
=

1

kLhydro

. (2.H)
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3 THE IDEAL GAS

As remarked in the manuscript, the notion of partial confinement also applies when the particles are restricted to move on a line.

The previous calculations still apply, except that the function g(k) is now expressed in terms of the 1D Fourier transform of the

3D Oseen tensor, namely,

g(k) =
ρhom

8πηΓ

∫ +∞

−∞
dx e−ikxG11(x), (2.I)

assuming the line of confinement is parameterized as y = 0,z = 0. From Eq. (4) one sees that G11(x) = 2/|x|, so that

g(k) =
2

πLhydro

∫ ∞

0
dx

coskx

x
. (2.J)

This integral is divergent at the lower limit, signaling that our simple mean–field approximation must be improved. For the

purpose of addressing the large–scale features of the dynamics, one can introduce a small–scale cutoff, x > σ (the particle size,

for instance), and study the limit kσ → 0. In such case, the result (2.J) is expressed in terms of the cosine integral function, with

the asymptotic behavior [7]

g(k)∼− 2

πLhydro

lnkσ (kσ → 0), (2.K)

thus leading to anomalous diffusion in Eq. (2.F) again.

3 The ideal gas

For an ideal gas, the particles are driven only by Brownian motion and Eq. (2.E) holds with D0(k) = ΓkBT , so that Eq. (1)

becomes
∂δρk

∂t
=−D0 [1+ g(k)]k2δρk. (3.A)

The associated linear equation for the real–space density field δρ(r, t) can be solved with the initial condition

δρ(r, t = 0) = δ(r) ⇔ δρ(k, t = 0) = 1, (3.B)

and the boundary condition that δρ(r, t) is absolutely integrable (so that δρk(t) exists). The solution is the so-called Green

function, G(r, t), of the problem, which can be easily obtained from Eq. (3.A),

G(r, t) =
∫

d2k

(2π)2
eik·re−D0[1+g(k)]k2t

=
1

D0t

∫
d2q

(2π)2
e

iq·r√
D0t e−(q2+q

√
t/thydro), (3.C)

after inserting the form of g(k), see Eq. (6), in terms of the time scale and the transformed integration variable

thydro :=
L2

hydro

D0
and q := k

√

D0t, (3.D)

respectively. Although this integral cannot be computed analytically, one can study its asymptotic behavior in two different

limits:

• For times t ≪ thydro, one can neglect the term involving thydro in Eq. (3.C) because it is relevant only for an ever narrower

range, 0 < q .
√

t/thydro, of the integration domain, so that G(r, t) describes normal 2D diffusion,

G(r, t)≈ 1

4πD0t
e−r2/(4D0t). (3.E)
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4 THE GAS OF CAPILLARY MONOPOLES

• One can also write

G(r, t) =
1

L2
hydro

∫
d2p

(2π)2
e

ip·r
Lhydro e−(p2+p)(t/thydro), (3.F)

in terms of the new integration variable p = q/
√

t/thydro. In the limit t ≫ thydro, the integral is exponentially dominated by

the values of p close to zero, so that one approximates

G(r, t)≈ 1

2πL2
hydro

∫ ∞

0
d p pJ0

(

pr

Lhydro

)

e−pt/thydro . (3.G)

in terms of the Bessel function J0 after performing the angular integration. This integral can be evaluated analytically [7]

and is given in Eq. (7).

Fig. 3 illustrates the ideal gas evolution with and without hydrodynamic interactions, with the purpose of observing also the

algebraic decay of the particle distribution profile predicted by Eq. (7).

4 The gas of capillary monopoles

A recent review of our latest work on this topic can be found in Ref. [8]. Here we summarize the most relevant aspects for

the present work. A colloidal monolayer can be formed when the colloidal particles are trapped at a fluid interface. This

creates an interfacial deformation that induces capillary forces between the particles. In the (experimentally relevant) case of

small interfacial deformations, the capillary forces can be described via a multipolar expansion [9, 10], whereby the dominant

contribution at large separations is the isotropic, monopolar term. The capillary monopole c0 of a particle at the interface is given

by the external force on the particle normal to the interface (e.g., the buoyant weight of the particles). The capillary potential

energy between two such monopoles a distance x apart in the interface has the form

φ(x) =− c2
0

2πγ
K0

( x

λ

)

, (4.A)

where γ is the surface tension of the interface, λ its capillary length, and K0 a modified Bessel function. The potential decays

exponentially at separations x ≫ λ, but only logarithmically for x ≪ λ (like 2D Newtonian gravity). In many experimental

configurations, c0 6= 0 and the resulting capillary attraction is very strong; additionally, λ ∼ mm while the interparticle separation

is ∼ µm, so that the net capillary force on a given particle results from the interaction with a large number of neighbors. As a

consequence, a mean–field approximation is reliable. Concerning the large–scale dynamics, one can thus separate a generalized

force f(r) at a point r on the interface into a local contribution and a nonlocal, mean–field capillary contribution [11],

f(r) =− 1

ρ(r)
∇p−∇Vcap. (4.B)

Here, p(ρ(r)) is the (local) pressure of the 2D gas due to sources other than capillary attraction (Brownian motion, hard–core or

electrostatic repulsion,. . . ) and

Vcap(r) =
∫

d2r′ ρ(r′)φ
(

|r− r′|
)

(4.C)

is the capillary potential energy of one particle due to the 2D gas (incidentally, the quantity−Vcap(r)/c0 is the vertical deformation

of the fluid interface at the point r). Upon expanding f in small density fluctuations δρk about the homogeneous 2D density ρhom

and using Eq. (2.E), one obtains D0(k) given by Eq. (8) with the characteristic time

T =
γ

Γc2
0ρhom

, (4.D)

and the characteristic length

K −1 =

√

γp′(ρhom)

c2
0ρhom

. (4.E)
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5 SIMULATION SETUP

In addition to the explicit dependence on the physical parameters, the values of these scales are also controlled by the temperature,

implicit in the pressure p. Ref. [11] studies in detail the ranges of variation of the values of T and K for various experimental

setups with particles trapped at fluid interfaces which realize a fluid of capillary monopoles. As an example, a collection of hard

spheres of radius a = 10 µm whose capillary monopole is due to the buoyant weight typically has K −1 ≈ 16 µm, T ≈ 1500 s at

densities corresponding to a mean interparticle separation ≈ 3a. Figure S1 shows the different qualitative shapes, dependent on

the capillary length λ, of the growth rate −k2D0(k) as a function of the wave number k as predicted by Eqs. (1,8). A homogeneous

particle distribution is unstable against clustering when λK > 1, which is achieved easily in typical experimental conditions [11].

Fig. 1 illustrates how the hydrodynamic interactions affect this linear evolution.

Beyond the linearized approximation valid only for small deviations from homogeneity, one can study analytically the limit-

ing case p → 0 (i.e., the only driving force is capillary attraction) and λ → ∞ (i.e., the capillary attraction has an infinite range,

like the Newtonian gravitational force). This scenario is dubbed “cold collapse” in the cosmological literature because p = 0

is interpreted as the zero temperature limit. In the linear regime, Eq. (8) reduces to D0(k) → −(k2T )−1, so that any density

perturbation grows with the same rate −1/(k2D0) = T , see Eq. (1). The fully nonlinear regime is described by Eqs. (2–3, 4.B,

4.C) with p = 0, λ → ∞ (“cold collapse”) and u = 0 (no hydrodynamic interactions), i.e.,

∂ρ

∂t
= Γ∇ · (ρ∇Vcap). (4.F)

This equation can be solved analytically for radially symmetric configurations [11]. In particular, for an initial top–hat shape

of radius R and density ρ0 of the density profile, it is found that this shape remains undeformed and all the particles collapse

simultaneously at the center after a time T ,

ρ(r, t) =











ρ0

ℓ2(t)
, |r|< Rℓ(t)

0, Rℓ(t)< |r|
ℓ(t) =

√

1− t

T
, (4.G)

where the time T is defined by Eq. (4.D) after identifying ρhom with the initial value ρ0 of the density inside the disk. When

the assumption λ → ∞ is relaxed, the problem can be studied perturbatively in 1/λ and one finds that the initial top–hat shape is

deformed by the formation of a density peak at the outer rim of the disk [13, 14]. Fig. 2 shows the influence of the hydrodynamic

interactions on this nonlinear evolution, both for λ → ∞ and λ < ∞.
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Figure S1 The theoretically predicted growth rate −k2D0(k) for the modes of density perturbations of a gas of capillary monopoles in the

absence of hydrodynamic interactions. The growth rate is given in units of the characteristic time T , the lengths are expressed in units of the

characteristic length K −1.

5 Simulation setup

5.1 Brownian dynamics and truncated Stokesian dynamics

The 2D Brownian Dynamics (BD) simulations for the bulk and for a collapsing disk of capillary monopoles is described in detail

in Refs. [12, 13]. The truncated Stokesian Dynamics (tSD) simulations incorporate the hydrodynamic interactions on the two–

particle level by means of the Rotne–Prager tensor. We follow the standard procedure described, e.g., in Ref. [15]. Overdamped
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5.2 Lattice Boltzmann simulations 5 SIMULATION SETUP

motion of N hard spheres (radius a) with hydrodynamic interactions incorporated leads to individual particle velocities according

to

vi =
1

kBT

N

∑
j=1

D(ri − r j) ·F j + si, (5.A)

where D denotes the Rotne–Prager tensor [16], given in terms of the Oseen tensor as

D(r) =



















kBT

6πηa
I , |r|= 0,

kBT

8πη

[

1+
1

3
a2∇2

]

G(r), |r| 6= 0,

(5.B)

si(t) is a Gaussian noise with zero mean and variance

〈si(t)s j(t
′)〉= 2D(ri − r j)δ(t − t ′), (5.C)

and F j is the force acting on the particle j, that includes the interaction with other particles and the force in the z–direction

constraining the particles to stay in the plane z = 0. In principle it is wrong to sidestep the explicit use of a constraining force by

the procedure of reducing the 3D dynamical equation (5.A) to its projection on the plane z = 0, because the stochastic dynamics

described by this equation is correct only provided [15] ∇ · D = 0, which is true in 3D but not in 2D. This approximation

would fail to capture correctly the contribution of the thermal motion to the induced ambient flow, making for instance that the

Boltzmann–Gibbs distribution would not be a stationary solution of the associated Fokker–Planck equation. In practice, we find

nonetheless that this approximation introduces no observable error in the simulated dynamics of a gas of capillary monopoles,

because the effect of thermal motion is quantitatively negligible on the regimes of dynamical evolution studied. However, in an

ideal gas, the dynamics is driving solely by thermal motion and both the Brownian motion in the z–direction and the constraining

force have to be accounted for explicitly in Eq. (5.A). In such case, the constraining force was modelled with the confining

potential

Vconf(z) =

(

2z

a

)2

kBT. (5.D)

Results do not depend on the specific form of Vconf(z) as long as the lateral scale one considers is large compared to the width of

the potential.

5.2 Lattice Boltzmann simulations

We used a combined 3D multi–component Lattice Boltzmann and Molecular dynamics simulation method (LB) [17, 18]. We

configure the system such that the particles are trapped at an interface between two immiscible fluids. See the upper panel of

Fig. S2 for an example configuration with only two particles. By applying a constant force perpendicular to the interface, it is

deformed and capillary interactions come into play.

For a practical diffuse interface Lattice–Boltzmann simulation, it is impossible to simulate µm–sized particles at a sharp

interface with a width of 1 nm. The interface widths will be around 3-5 lattice units, whereas particle sizes can be chosen a

few times the interface width if one aims at simulating with about 50 particles. The strategy we therefore adopted is to demand

that the nanoscopic Lattice–Boltzmann particles essentially obey overdamped dynamics: we require that the ratio of the velocity

relaxation time τv to the characteristic time T of the capillary collapse (see Eq. (4.D)) is the same for both the tSD simulations

and the LB simulations. In that way, the physical assumptions about the dynamical evolution among all approaches (mean–field

theory, tSD and LB simulations) are the same. In detail, the setup was as follows.

We simulate a system of Lx × Ly × Lz = 256× 256× 64 lattice sites, occupied by two fluids and separated by an interface

parallel to the x-y–plane. The initial majority and minority number densities of the fluid phases were set to 0.7 and 0.04 in lattice

units, respectively. Both mass densities were kept fixed at unity and the kinematic viscosities were kept at ν = 1/6. The particles

were placed at the interface and after a few (∼ 2000) equilibration timesteps, a force c0 perpendicular to the interface acting

only on the particles was applied. The resulting deformation of the interface gives rise to a monopolar capillary interaction given

by Eq. (4.A), with the surface tension γ of the interface being determined by the fluid-fluid coupling constant gbr of the two

fluids in the underlying Shan-Chen multi–component LB model. Here we use gbr = 0.10, which results in γ = 0.0416 in lattice

6



5 SIMULATION SETUP 5.3 Parameter values for Figs. (1–3)

Figure S2 (Upper panel) Two particles trapped at a fluid interface between two immiscible fluids. The interface is deformed due to a constant

force acting on the particles in positive z-direction. (Lower panel) Snapshots of the collapse of a disk–like distribution of N = 50 particles

trapped at the fluid interface (ρp = 1.76, c0 =−0.08, T = 44900, other parameters as given in the text.)

units [17, 18]). After fixing the radius of the particles (a = 5 lattice units), their mass still remains as a free variable. We use the

physical condition (mentioned above) of τv/T being equal for tSD and LB. We have τv = mΓ, and for the parameters given for

Fig. 2 (see below), tSD gives τv/T ≈ 1.87× 10−3. We therefore choose a relative mass density of the particles as ρp = 7.06.

Even with this constraint on the ratio τv/T and thus the particle mass, different characteristic times may be achieved by varying

the particle density and the applied force simultaneously (see Eq. (4.D)). We have therefore checked an alternative setup for these

parameters (ρp = 1.76, c0 =−0.08) and found the same dynamics (see also lower panel in Fig. S2).

With this choice of parameters, the mobility is given by Γ = 10/(7πa) where we used the fact that the kinematic viscosity in

the model is ν = 1/6. The characteristic time (in lattice units) is T ≈ 179600 (see Eq. (4.D)).

5.3 Parameter values for Figs. (1–3)

Here we collect the specific values of the parameters employed in the different simulations leading to Figs. (1–3).

• Fig. 1 includes the results from tSD simulations of a collection of N = 3844 hard spheres of radius a = 10 µm in a

square box of sidelength L = 7160 µm with periodic boundary conditions. The physical parameters were chosen such

that λ = 1100 µm, K −1 = 49 µm and T = 52863 s. The Fourier components ρk were extracted from the average over

2000 independent runs. The theoretical prediction is represented by the lines. The thin lines represent the case without

hydrodynamic interactions, i.e., the solution of the linear equation (1) with D(k) given by Eq. (8), see also Fig. S1. The

thick lines correspond to the case that includes hydrodynamic interactions, i.e., with D(k) given by Eq. (2.F).
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• In Fig. 2, the tSD simulations employ N = 50 particles of radius a = 5 µm distributed homogeneously in a disk of initial

radius R = 100 µm, giving an initial density ρ0 ≈ (1/7) of the 2D close packing density. The disk was placed inside a

square box of sidelength L = 256 µm with periodic boundary conditions. The physical parameters were chosen such that

K −1 = 26 µm and T = 5935 s (from Eqs. (4.D, 4.E) with ρhom = ρ0), with λ = 1000R = 100000 µm. The relative mass

density of the particles in BD and tSD simulations was set to ρp = 1. The density profiles were extracted from the average

over 10000 independent runs. The parameters of the LB simulations were chosen to match the dynamical regime modelled

by the BD and tSD simulations as described in the previous subsection. The density profile was obtained from the average

over 30 independent runs containing each N = 50 particles. Finally, the dashed lines in Fig. 2 correspond to the theoretical

prediction, see Eq. (4.G).

• In Fig. 3, a larger system for the tSD and BD simulations (compared to the setup for Fig. 2) was used (N = 1804 particles,

radius a= 10 µm, initial radius of disk R = 1832 µm, initial density ρ0 ≈ (1/17) of the 2D close packing density, L = 8000

µm). The physical parameters were chosen such that K −1 = 34 µm and T = 23835 s (from Eqs. (4.D, 4.E) with ρhom = ρ0),

with λ = 0.1R = 183 µm. The density profiles were extracted from the average over 120 independent runs.

• Fig. 4 shows the results from tSD simulations of an ideal gas of N = 400 particles with a hydrodynamic radius rH = 10 µm

(i.e., a = rH only in Eq. (5.B), so that the particles experience hydrodynamic interactions in spite of the absence of a

direct interaction). N0 = 212 particles were located in a square box of sidelength L = 1000 µm (with periodic boundary

conditions), thus giving a background density ρ0 = N0/L2. In the initial state, additional Nd = N −N0 = 188 particles

were concentrated in a circular patch of radius R = 100 µm forming an overdensity ∼ 29ρ0. Here, the characteristic time

is defined by T = (kBT Γρ0)
−1, which corresponds to T = 107332 s for our choice of physical parameters. The density

profiles were extracted from the average over 10000 and 50000 independent runs for tSD and BD respectively. The lines

correspond to the numerical solution of Eqs. (2–4) with imposed radial symmetry.
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