Supporting Information

Nanoscale Engineering of Low-Fouling Surfaces

through Polydopamine Immobilisation of

Zwitterionic Peptides

Jiwei Cui, Yi Ju, Kang Liang, Hirotaka Ejima, Samuel Lörcher, Katelyn T. Gause, Joseph J. Richardson, and Frank Caruso* Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia fcaruso@unimelb.edu.au

Fig. S1. AFM images of scratched (a) PDA and (b) PDA/peptide films.

Fig. S2. XPS characterisation of PDA-coated (left column) and PDA/peptide-coated (right column) surfaces. Inset shows the high-resolution spectra. The peak at 164 eV represents the sulphur 2p signal derived from the surface-immobilised peptide.

Substrates	Al ₂ O ₃	Au	PTFE	PS	SiO ₂
Bare	76±4	18±2	114±2	92±4	22±3
PDA coating	50±2	47±1	57±1	49±3	48±3
PDA/peptide coating	32±3	23±2	29±3	30±3	22±2

 Table S1. Contact angles of films formed on various substrates.

Fig. S3. Quantitative *E. coli* and *S. epidermidis* adhesion onto glass/PDA/PEG substrates after incubation for 24 h. The inset fluorescence microscopy images show the bacteria adhesion on glass/PDA/PEG substrates. All scale bars are 10 µm.