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Supplementary Information

Fabrication of Capillary Micromechanics device

  We taper a round capillary (World Precision Inc.), of which the inner and outer diameter is 

0.58 mm and 1 mm, respectively, using a micropipette puller (Sutter P-97). Subsequently, we 

polish the tip of the capillary to the desired diameter using sand paper. The diameter of the tip 

must be smaller than the diameter of the microparticle, but large enough to enable fluid to 

flow at large enough flow rates without an excessive pressure build-up across the device. The 

tip of the tapered round capillary is inserted into a water reservoir, typically made from a 

microcentrifugal tube. Both the tapered capillary and the water reservoir are fixed on a 

microscopic glass slide using epoxy glue. We then dip the untapered end of the capillary 

perpendicularly into a dilute suspension of microparticles. Some microparticles will be sucked 

into the round capillary by capillary forces. The untapered end of the round capillary is then 

connected to a precision pressure regulator using soft tubing (Scientific Commodities Inc.).  A 

pressure regulator (Aignep spa, Mode. T020) is used to adjust the inlet pressure from 0 psi to 

30 psi. To control the applied pressure differnce, either a high-precision pressure regulator or 

hydrostatic pressure can be used. By adjusting the pressure difference between the inlet and 

the outlet of the capillary, the flow of the microparticle suspension can be controlled to move 

forward or backward at different flow rates. A schematic representation of the Capillary 

Micromechanics set-up is shown in Figure 1. 

Mechanism of Capillary Micromechanics

  The contact area between the particle and the glass walls has the shape of a circular band; we 

use the pressure-dependent length Lband and average radius Rband of this contact band as a 

measure of the strain deformations in the radial direction and along the central axis of the 

capillary. The pressure acting on the particle from the glass wall, pwall, is also derived from the 

geometry: by balancing the z-components of all external forces acting on the particle, one 

obtains
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,
𝑝𝑤𝑎𝑙𝑙 = 2

𝑠𝑖𝑛⁡(𝛼)
𝑅𝑏𝑎𝑛𝑑
𝐿𝑏𝑎𝑛𝑑

𝑝

where  is the tapering angle of the capillary. The characteristic stresses for a compressive 

and a shear deformation can then be expressed as  and  , respectively; (2𝑝𝑤𝑎𝑙𝑙 + 𝑝)/3 (𝑝𝑤𝑎𝑙𝑙 ‒ 𝑝)/2

the corresponding characteristic volumetric and shear strains are and   , Δ𝑉/𝑉 ≈ 2𝜖𝑟 + 𝜖𝑧 𝜖𝑟 ‒ 𝜖𝑧

respectively. In the linear elastic regime the compressive and shear modulus of the particles is 

then quantified by the ratio of the respective characteristic stress and the corresponding 

characteristic strain deformation as

  , and
𝐾 =  

1
3(2𝑝𝑤𝑎𝑙𝑙 + 𝑝)

2𝜀𝑟 + 𝜀𝑧

  .
𝐺 =  

1
2(𝑝𝑤𝑎𝑙𝑙 ‒ 𝑝)

𝜀𝑟 ‒ 𝜀𝑧

  The compressive elastic modulus K and the shear elastic modulus G is thus readily evaluated 

by plotting the respective characteristic stress as a function of the characteristic strain 

deformation, where K and G correspond to the slopes of the resulting curves [25].

Characterization of mechanical properties of single PLGA and alginate microparticles

  We first characterize the elastic properties of single PLGA and alginate microparticles using 

the Capillary Micromechanics technique described above; typical results are shown in Figure 

S1 (A-B), where we plot the characteristic stress for shear,  , and for 𝜎𝑠ℎ𝑒𝑎𝑟 = (𝑝𝑤𝑎𝑙𝑙 ‒ 𝑝) 2

compression, , as a function or the respective characteristic strain 𝜎𝑐𝑜𝑚𝑝 = (2𝑝𝑤𝑎𝑙𝑙 + 𝑝) 3

deformation. Our results indicate that in the linear deformation range, alginate microparticles 

have an average shear and compressive modulus of G=9.38 ± 2.79 kPa and K=66.89 ± 9.19 

kPa, respectively; PLGA microparticles have an average shear and compressive modulus of 



3

G=91.51 ± 8.97 kPa and K=782.25 ± 147.8 kPa, respectively. These values are used as input 

parameters in the simple model description. 

Figure. S1. A) & B) Compressive and shear modulus analysis for alginate and PLGA 

microparticles. (A) Shear elastic modulus: Plot of the characteristic shear stress 

 as a function of the characteristic shear strain  ; the slope of these  shear  (pwall  p) / 2

curves is the elastic shear modulus G of the particles. (B) Compressive elastic modulus: Plot 

of the characteristic shear stress  as a function of the characteristic  compr.  (2pwall  p) / 3

shear strain  ; the slope of these curves is the compressive modulus K. The error bar 

shows the maximum error associated with the accuracy of the applied pressure difference and 

the spatial precision in the digital image analysis25 as the main sources of errors.

Deduction of model to describe the strain stiffening behavior of core-shell microparticles 

with different α

  For a cylindrical inclusion of radius Ri inside another cylinder of radius R, the shell strain in 

the radial direction can be expressed as  , where  represents the 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 𝜀𝑟 ∙ 𝑅 (𝑅 ‒ 𝑅𝑖) 𝜀𝑟

macroscopic strain, based on the change in the radius of the whole cylinder. We assume that 

the stress within the middle section of the particle is constant; for instance, the compressive 

stress in the material should be matched between the core and the shell materials:
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𝐾𝑐𝑜𝑟𝑒(2𝜖𝑟,𝑐𝑜𝑟𝑒 + 𝜖𝑧,𝑐𝑜𝑟𝑒) = 𝐺𝑠ℎ𝑒𝑙𝑙(2𝜖𝑟,𝑠ℎ𝑒𝑙𝑙 + 𝜖𝑧,𝑠ℎ𝑒𝑙𝑙)

and thus the strains in the shell material will be larger than those in the core material. 

Assuming that the Poisson ratios of the core and shell material are independent of 

deformation, the longitudinal strains can be expressed as  and , 𝜖𝑧,𝑠ℎ𝑒𝑙𝑙 =‒ 2𝜈𝑠ℎ𝑒𝑙𝑙 𝜖𝑧,𝑐𝑜𝑟𝑒 =‒ 2𝜈𝑐𝑜𝑟𝑒

thus enabling us to calculate the predicted ratio between the radial strains in the core and the 

shell material as ; in our case, the Poisson ratios in the core and the 
𝛽 =

𝜖𝑧,𝑐𝑜𝑟𝑒
𝜖𝑧,𝑠ℎ𝑒𝑙𝑙

=
𝐾𝑠ℎ𝑒𝑙𝑙(2 ‒ 2𝜈𝑠ℎ𝑒𝑙𝑙)
𝐾𝑐𝑜𝑟𝑒(2 ‒ 2𝜈𝑐𝑜𝑟𝑒)

shell material can be estimated directly from the measurements on the single component 

particles as . It turns out that for our particles the Poisson ratios of the 𝜈 = (3𝐾 ‒ 2𝐺) 2(3𝐾 + 𝐺)

shell and the core are similar, and , thus this ratio can be approximated 𝜈𝑠ℎ𝑒𝑙𝑙 = 0.43 𝜈𝑐𝑜𝑟𝑒 = 0.443

as . The total radial strain applied on the particle,  is thus a result of 𝛽 = 𝐾𝑠ℎ𝑒𝑙𝑙 𝐾𝑐𝑜𝑟𝑒 𝜖𝑟

deformations of different extents in the shell and core materials, , 𝜖𝑟 = 𝛾𝜖𝑟,𝑐𝑜𝑟𝑒 + (1 ‒ 𝛾)𝜖𝑟,𝑠ℎ𝑒𝑙𝑙

where   is the ratio of the radii of the core and the shell, with α the radius 𝛾 = 𝛼(1 ‒ 𝛽𝜖𝑟) (1 ‒ 𝜖𝑟)

ratio at zero deformation. As a result, the radial strain in the shell material can be expressed as 

a function of the overall radial strain   as 𝜖𝑟

 ,
𝜖𝑟,𝑠ℎ𝑒𝑙𝑙 = 1

1 + 𝛽𝛾 ‒ 𝛾 =
𝜖𝑟

1 ‒ 𝜖𝑟 ‒ (1 ‒ 𝛽)𝛾0(1 ‒ 𝛽𝜖𝑟)

and the radial strain in the core material given as .𝜖𝑟,𝑐𝑜𝑟𝑒 = 𝛽𝜖𝑟,𝑠ℎ𝑒𝑙𝑙

The strain deformation in the longitudinal direction is then calculated using the Poisson’s ratio  

and the radial strain; within the middle section of the particle we then find a longitudinal 

strain in the shell material of

𝜀𝑧,𝑠ℎ𝑒𝑙𝑙 =‒ 2𝜐𝑠ℎ𝑒𝑙𝑙 ∙ 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙

These estimated strains now enable us to express the effective stress response in the middle 

section of the particle as 

𝐾𝑚𝑖𝑑𝑑𝑙𝑒 ‒ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐾𝑐𝑜𝑟𝑒(2𝜀𝑟,𝑐𝑜𝑟𝑒 + 𝜀𝑧,𝑐𝑜𝑟𝑒)

2𝜀𝑟 + 𝜀𝑧
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𝐺𝑚𝑖𝑑𝑑𝑙𝑒 ‒ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝐺𝑐𝑜𝑟𝑒(𝜀𝑟,𝑐𝑜𝑟𝑒 ‒ 𝜀𝑧,𝑐𝑜𝑟𝑒)

𝜀𝑟 ‒ 𝜀𝑧

Further, the effective compressive K and shear G modulus of the whole core-shell 

microparticle is the sum of the modulus of the three sections weighted by their volume ratios.

 𝐾𝑛𝑜𝑛 ‒ 𝑙𝑖𝑛𝑒𝑎𝑟 = 𝐾𝑚𝑖𝑑𝑑𝑙𝑒 ‒ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∙ (𝐿𝑐𝑜𝑟𝑒 𝐿) + 𝐾𝑠ℎ𝑒𝑙𝑙 ∙ (1 ‒ 𝐿𝑐𝑜𝑟𝑒 𝐿)

𝐺𝑛𝑜𝑛 ‒ 𝑙𝑖𝑛𝑒𝑎𝑟 = 𝐺𝑚𝑖𝑑𝑑𝑙𝑒 ‒ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ∙ (𝐿𝑐𝑜𝑟𝑒 𝐿) + 𝐺𝑠ℎ𝑒𝑙𝑙 ∙ (1 ‒ 𝐿𝑐𝑜𝑟𝑒 𝐿)


