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Simulation methodology
We perform classical molecular dynamics simulations of freestanding polymer films comprised of 
unentangled 20-bead chains. Nonbonded beads interact via a 12-6 Lennard Jones potential,

where ε and σ are characteristic energy and lengthscale parameters,    12 64LJE r r     

respectively, and where interactions are truncated and shifted to zero at a distance of 2.5 σ. Both ϵ and 
σ are set to unity for all simulations performed here. Bonded beads interact via the Finitely Extensible 

Nonlinear Elastic (FENE) potential, , where K = 30 is an inelastic  22
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spring constant and R0 = 1.5 is a maximum bond length. This model, modified from the earlier work of 
Kremer and Grest, has previously been employed to study polymer glass formation, both in the bulk 
and under confinement.

Simulations of the 1h thickness film and interface-free system are taken from a previously published 
study1. For other systems, four independent trials are performed. Initial random configurations are 
produced with the polymer chains in a freestanding film morphology generated by PACKMOL2.  The 
freestanding film morphology is maintained by employing periodic boundary conditions in all directions 
and performing simulations in the NVT ensemble. The systems are initially equilibrated at a 
temperature of T = 1.5 for a time of 10,000 τ. The systems are then quenched from 1.5 T to 0.3 T at a 
rate of 10-6 T/τ. Configurations saved regularly during the quench are then subject to an additional 
equilibration of at least 100 τα, where τα is the structural relaxation time as determined from the self-
part of the intermediate scattering function. Data collection runs are then performed from these 
resulting configurations.

Simulations are performed in the Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) package3. Simulations employ a RESPA time stepping scheme, with a nonbonded timestep 
of 0.01 τ and a bonded timestep of 0.0025 τ.  Temperature is controlled via the Nose-Hoover 
thermostat, as implemented in LAMMPS, with a damping parameter of 2 τ. The net linear momentum 
is set to zero every 1 τ to prevent any possible buildup of momentum.

We quantify relaxation dynamics via the self-part of the intermediate scattering function,
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where k is the wavevector, N is the number of particles, and rj(t) is the position of particle j at time t. We 
employ a wavenumber k = 7.07, comparable to the first peak in the structure factor data, with data 
averaged over multiple randomly chosen wavevectors k corresponding to this wavenumber.  The 
structural relaxation time τα is defined as the time at which Fs(k,t) decays by 80%, with a stretched 
exponential fit to the data employed for interpolation and data smoothing. 
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In order to quantify dynamics locally within the film, we sort particles into spatial bins of thickness 
0.875σ as a function of distance from the interface, with the interface defined as the point at which the 
density is equal to half that in the film center. For the purpose of determining interfacial position, the 
density is calculated for bins with thickness of less than 0.16σ. We first identify the film center by 
identifying the point halfway between the two positions at which the density is equal to 0.5; the central 
film density is then determined based upon the average over a region at least 1σ thick centered on this 
point. A precise position for the interface is determined by performing a linear interpolation using the 
two consecutive bins with values on either side of half of the central density. We denote the position of 
the interface as z = 0 and average all z-dependent data over the two interfaces.
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