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1 Supporting Information

In this section, we present a more detailed description of the numerical simulations presented in
the main text. Together with the interaction potentials found in the main text, and the simulation
parameters in Table 1 below, all the necessary information to simulate our ionic liquid model is
provided.

Table 1: Parameters for the NVT simulations. The columns give the ionic liquid type{1} Occur-
rence in the main text, given by the figure index{2} Inverse surface charge density{3} Number
of cations{4} Number of anions{5} Box dimensions{6}.

Type Fig. as(A%/e) Ne,mivm+ Npp- La/Ly/L: (A)
C2MIM Ta -320 305 295 40.0/40.0/52.8
C2MIM 4 -327 472 450 60.0/60.0/35.0
COMIM (MC) 4 -327 (uniform) 944 900  84.9/84.9/35.0
C4MIM Ha -100 358 316 45.8/45.8/52.8
C4MIM 5b -200 259 243 40.0/40.0/52.8
C4MIM Ta -320 254 244 40.0/40.0/52.8
C4MIM 5c -400 629 609 63.3/63.3/52.8
CAMIM 5 +100 330 372 45.8/45.8/52.8
COMIM Ta 320 215 205 40.0/40.0/52.8

1.1 MD simulation details

All molecular dynamics (MD) simulations were performed with the simulation software GRO-
MACS, version 4.5.4. For a detailed description of this software, see the user manual.® All initial
ionic liquid configurations, generated by a separate script, were energy minimised by a steepest
descent method (integrator = steep). For the NPT (constant pressure) bulk simulations, a cubic
simulation box with periodic boundary conditions in three dimensions (pbc = xyz) was employed.



We used a leap frog integrator for integrating Newton’s equations of motion (integrator = md).
The temperatures (for each species) were thermostated with a Berendsen-thermostat (tcoupl =
berendsen) with a reference temperature and time constant set to 294 K and 1 ps, respectively.
The Berendsen pressure coupling algorithm? was used (pcoupl = berendsen), with the reference
pressure and time constant set to 1 bar and 1ps, respectively.

The MD bulk densities, shown in Figure 3 in the main text, were obtained by simulating 300
salt pairs for C2MIM and C6MIM. For C4MIM we simulated 600 pairs (9000 monomers). At this
point we want to stress that both the electrostatic and non-electrostatic interactions, contribute
significantly to the observed total density, i.e. switching off either one of them, greatly reduces
the equilibrium density of the fluid at a pressure of 1 bar.

For the NVT slit simulations, we used a velocity verlet algorithm (integrator = md-vv) to
integrate Newton’s equations of motion for the freely moving species. The temperature for
each species was thermostated using velocity rescaling, with a stochastic term (tcoupl = v-
rescale), ensuring the generation of a proper canonical ensemble.® A time step of 10 fs was
usually employed, but to check the convergence of the density profiles, simulations with a 1 fs
time step were also performed, for some of the systems. To account for corrections of the long
ranged electrostatic interaction from periodic images, fast Particle-Mesh Ewald electrostatics
(coulomb type = PME) was used (both for the NPT and NVT simulations), with a 2 nm real
space Coulomb cut-off and a fourier spacing equal to 0.3 nm. The non-electrostatic potentials
were truncated at 2 nm (rvdw = 2). In the canonical slit simulations, 2D periodic boundary
conditions (pbc = xy) were employed (ewald-geometry = 3dc), with the scaling factor for the
third box vector on the Ewald-summation set to 4 (wall-ewald-zfac = 4). This creates an empty
layer in the box which serves to decrease the unphysical interaction between periodic images, see
ref.!

1.2 Surface description

To mimic charged surfaces, we introduced explicit wall charges, placed in a fixed quadratic grid

in the xy-plane at z = 0 and z = h. For all MD-simulations, the number of charged sites on each

wall N,,, was 361. With help from Table 1, the valency of each wall site, v, can be calculated

as follows:

[NC,,,MIMJr - BFZ] (1)
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It follows that the inverse surface charge density as, in Table 1 (third column), can be calculated
as:

Vw = —

L.L,
i 2
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Except for the electrostatic interactions with the wall charges, all monomers also interacted with
the walls by the non-electrostatic surface potential given in Eq. 17 (see main text).

1.3 Bond potential

The bonds between adjacent monomer beads ¢ and 7, in the cations and anions in our ionic liquid
model (see Figure 1 in the main text) were described by a harmonic bond stretching potential:

1
Vo(riz) = gkﬁ’j(ﬁj —big)?, 3)

with b;; being the equilibrium bond length. In this work b;; = ¢ = 0.24 nm. The spring constant
ké’j was set to 10000 kJmol ~'nm~2. The non-bonded non-electrostatic part was modeled by the
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Figure 1: Simulated total density profiles (MD) for C4AMIM for an inverse surface charge as = + 100 A2/e. The
black curve () and the red curve (X) differ by the value of the spring constant kfj in Eq. 3. The inset shows
the corresponding bond length distribution P, sampled for the cationic species.

Lennard-Jones potential in eq.(1) (main text) with ey ; = 100 kK. The non-bonded electrostatic
interaction between pairs of ionic liquid monomers is given by Eq.(2) in the main text.

In Figure 1, we present the total density profiles outside a charged surface with an inverse
surface charge density of a; = + 100 A2 /e. Results from two separate simulations are shown, and
differ by a factor of ten in the spring constant kfj (see Eq. 3). From the simulation trajectories,
we extracted the bond length distribution P(b), for the cationic species, which are shown in the
inset of Figure 1. As can be seen, the model is insensitive to the exact choice of bond stiffness.
The vertical dashed line indicate the delta function in the bond length distribution (b = 0.24 nm),
which were implemented in the DFT/MC calculations. The discrepancies between the density
profiles in the main text figures, calculated by DFT, and sampled via numerical simulations (MD
and MC), can thus not be explained by the slight difference in the bond model.

Figure 2 shows iso-density surfaces for the anions and charged cation monomers for the
C4MIM-system at a; = -100 A2 /e. Close to the surfaces dense uniform layers of cations are
created, followed by more diffuse layers of anions. In the more bulk-like regime, there seems to
be a tendency to form regions of clustered anions and cations, which has been reported before. 46

A density profile was generated by collecting data during roughly 100 ns, which corresponds
to 10M steps using a time step of 10 fs. Such a simulation took about 48 hours to complete (in
real time), when using 12 processors/job.

2 Monte Carlo simulations

A comparison between MD and MC simulations (for C2MIM) is given in Figure 4 in the main
text. This simulation was performed using the standard Metropolis Monte Carlo algorithm” in
a canonical ensemble. The minimum image convention was employed, using periodic boundary
conditions in the x and y-directions. See Table 1 for simulation details. Trial Monte Carlo moves
were attempted in the following proportions: ion translation (10%) (with a displacement param-
eter of 1 A), crank-shaft moves (85%) and cation reptation (5%). This reflects the acceptance
of the moves and since the system studied under study here is very dense, the reptation and
translation trial moves were rarely successful.



Figure 2: Snapshot for the simulation of C4MIM at as = -100 Az/e. The black spheres represent the surface
sites located in z = 0 and z = h. In region between the walls, iso-density surfaces for the charged cation monomers
and anions are shown in grey and red colors, respectively.

The charged surfaces at z = 0 and z = h, were modelled as two infinite charged surfaces with
a uniform surface charge density. Furthermore, the MC simulation followed a mean-field square
correction procedure® to deal with the electrostatic potentials. In short, particles inside the
box interact with the Coulomb potential, and an external ‘correction‘ field generated from the
average charge distribution sampled from a previous simulation. This inhomogeneous potential as
a function of z, takes into account the effects of charged particles outside the box. The expression
for the potential is taken from solving Poisson‘s equation for a series of infinite charged sheets
(with its corresponding charge given by the average charge density previously computed) with
cutout square holes of size Ly, X Ly, (the potential inside the hole is from the actual simulation).
In our implementation, the procedure consisted of 4 simulations: i) an initialisation with only the
bare Coulomb potential (8 million cycles), ii) a simulation producing the preliminary external field
(13.2 million cycles), iii) a simulation running with the external field, which helps to converge
the external field further, and make it self-consistent (13.2 million cycles), and iv) the final
production run without updating the external field (26.4 million cycles).

To prevent the system freezing, without the correction potential, the first two simulations
were run at a temperature of 353K and the final two at 294K. However it turned out that, for
the very dense systems under investigation here, this correction method converges slowly with
respect to systems size, which forced us to make the xy-dimensions at least two times larger than
the wall-wall separation. Since doubling the xy-dimensions leads to four times as many molecules
in the system (for a given density), we opted to use the MD approach to finalize our production
runs. Nevertheless, the excellent agreement between the MC and MD results, assures us that
our MD parameters is properly set up. Moreover, we can safely say that using a uniform surface
charge density (which is the case in the DFT calculations) gives the same result as describing
the wall as built from partially charged explicit wall sites.
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