# **Supporting Information**

# Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids

## Debasish Saha and Ranjini Bandyopadhyay

Soft Condensed Matter Group, Raman Research Institute,

C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, INDIA

### Yogesh M. Joshi

Department of Chemical Engineering,

Indian Institute of Technology Kanpur, Kanpur 208 016, INDIA

------

The measure of concentration (% w/v) used in the manuscript refers to the weight of Laponite in grams that is mixed in 100 ml of deionized and distilled water. We must note here that % w/v is almost equal to wt %. For example,

2.0% w/v is equivalent to 1.96 wt %

2.5% w/v is equivalent to 2.44 wt %

3.0% w/v is equivalent to 2.91 wt %

3.5% w/v is equivalent to 3.38 wt %



**Figure S1:** The waiting times associated with the minima in  $\tau_1(t_{w,min})$  vs. concentration of Laponite.



**Figure S2:** The stretching exponent,  $\beta$ , *vs.* waiting time,  $t_{w}$  for 2.0% w/v ( $\Box$ ), 2.5% w/v ( $\circ$ ), 3.0% w/v ( $\Delta$ ) and 3.5% w/v ( $\nabla$ ) Laponite suspensions. The solid lines are linear fits.



**Figure S3:** The rate  $q'(=1/t_{\alpha}^{\infty})$  at which the system approaches the glass transition is plotted *vs*. Laponite concentration. The solid line is an exponential fit.



**Figure S4:** The mean slow relaxation times,  $\langle \tau_{ww} \rangle$ , *vs.* waiting time,  $t_w$  are plotted for four different concentrations of Laponite The solid lines show fits to the modified VFT functions,  $\langle \tau_{ww} \rangle = \langle \tau_{ww} \rangle^0 \exp\left(\frac{Dt_w}{t_{\alpha}^{\infty} - t_w}\right)$  (equation 3) and the dashed lines show fits to the exponential function  $\langle \tau_{ww} \rangle = \langle \tau_{ww} \rangle^0 \exp(At_w)$ .



**Figure S5:** The simultaneous time-evolution of the sodium ion concentration ( $\Box$ ), the complex viscosity (o) and the mean slow relaxation time ( $\Delta$ ) of a 3.0% w/v Laponite sample. The vertical dotted line indicates the glass transition as defined by Angell in reference [3] of the manuscript. Sodium ion concentration is measured with waiting time by a Eutech CyberScan 2100 pH/ion meter equipped with a sodium ion selective electrode (ROSS Sure-Flow).

#### Calculations of activation energies

#### Derivation of equation 5:

For a supercooled liquid,  $\tau_1 \sim \exp(E/k_B T)$  [Ngai, J. Chem. Phys., 109, 6982 (1998)].

Comparison with equation 2 of our paper yields:  $\frac{E}{k_B T} = \frac{t_w}{t_{\beta}^{\infty}}$ 

The one-to-one mapping  $(1/T \leftrightarrow t_w)$  demonstrated in this paper (equations 2 and 3 of the manuscript, plotted in figures 2(a) and 2(b)) yields the following expression:

$$E = \frac{k_B c_1}{t_B^{\infty}}$$

*E* can therefore be written in terms of  $t_{\beta}^{\infty}$ . This is plotted in the inset of figure S5. The constant  $c_1$  in the above equation has the dimension of [time]×[temperature].

### Derivation of equation 6:

According to reference 50:

$$E_{VFT} = k_B \left[ \frac{d \left( \ln \tau \right)}{d \left( 1/T \right)} \right]$$

Substituting  $\tau = \tau_0 \exp\left(\frac{DT_0}{T - T_0}\right)$  [Reference: C. A. Angell, J. Res. Natl. Inst. Stand. Technol. 102,

171 (1997)] in the above expression for  $E_{VFT}$ , we get,  $E_{VFT} = k_B \left[ \frac{DT_0 T^2}{(T - T_0)^2} \right]$ 

Substituting  $c_2/T = t_w$  and  $c_2/T_0 = t_\alpha^{\infty}$ , we obtain

$$E_{VFT} = k_B c_2 \left[ \frac{D}{t_{\alpha}^{\infty} \left( 1 - t_w / t_{\alpha}^{\infty} \right)^2} \right]$$

 $E_{VFT}$  can therefore be written in terms of  $t_w$  and  $t_{\alpha}^{\infty}$ . This is plotted in the figure S5. The constant  $c_2$  in the above equation has the dimension of [time]×[temperature].



**Figure S6:** The normalized apparent activation energy ( $E_{VFT}$ ) associated with the  $\alpha$ -relaxation process *vs.* waiting time ( $t_w$ ) for 2.0% w/v ( $\Box$ ), 2.5% w/v ( $\circ$ ), 3.0% w/v ( $\Delta$ ) and 3.5% w/v ( $\nabla$ ) Laponite suspensions. In the inset, the normalized activation energy (E) associated with the  $\beta$ -relaxation process is plotted *vs.* Laponite concentration *c.* The solid line is a power law fit ( $E \sim c^{5.7\pm0.3}$ ).

| Table T1: Estimate | es of $t^{\infty}_{\alpha}$ , $t^{\infty}_{\beta}$ and | nd $t_g$ vs. La | ponite concent | ration |
|--------------------|--------------------------------------------------------|-----------------|----------------|--------|
|                    |                                                        |                 |                |        |

| Concentration<br>of Laponite<br>(% w/v) | $t^{\infty}_{\alpha}$ (hours) | $t^{\infty}_{\beta}$ (hours) | t <sub>g</sub><br>(hours) |
|-----------------------------------------|-------------------------------|------------------------------|---------------------------|
| 2.0                                     | 538.0                         | 375.0                        | 397.0                     |
| 2.5                                     | 112.3                         | 89.8                         | 83.1                      |
| 3.0                                     | 35.2                          | 31.9                         | 25.8                      |
| 3.5                                     | 21.0                          | 17.5                         | 15.5                      |

# Calculation of the width parameter $(\alpha_1)$ and non-Gaussian parameter $(\alpha_2)$ :

Distribution of  $\alpha$ -relaxation is given by,

$$\rho_{ww}(\tau) = \frac{\tau_{ww}}{\pi\tau^2} \sum_{k=0}^{\infty} (-1)^k \sin(\pi\beta k) \Gamma(\beta k+1) \left(\frac{\tau}{\tau_{ww}}\right)^{\beta k+1}$$

and the  $n^{\text{th}}$  moment of the distribution is given by,

$$\left\langle \tau_{ww}^{n} \right\rangle = \frac{\tau_{ww}^{n}}{\beta} \frac{\Gamma\left(\frac{n}{\beta}\right)}{\Gamma(n)}$$

/

The width parameter is given by:

$$\alpha_{1} = \frac{\left\langle \tau_{ww}^{2} \right\rangle - \left\langle \tau_{ww} \right\rangle^{2}}{\left\langle \tau_{ww} \right\rangle^{2}}$$

and the non-Gaussian parameter is given by:

$$\alpha_2 = \frac{3\left\langle \tau_{ww}^4 \right\rangle}{5\left\langle \tau_{ww}^2 \right\rangle^2} - 1$$

| $t_w$ (hours) | $\alpha_1$ |
|---------------|------------|---------------|------------|---------------|------------|---------------|------------|
| 2.0% w/v      | 2.0% w/v   | 2.5% w/v      | 2.5% w/v   | 3.0% w/v      | 3.0% w/v   | 3.5% w/v      | 3.5% w/v   |
| 0.5           | 1.10462    | 0.58          | 1.13886    | 0.5           | 1.25068    | 0.5           | 1.37439    |
| 1             | 1.12202    | 1             | 1.15897    | 1             | 1.27299    | 1             | 1.46605    |
| 2             | 1.13112    | 1.5           | 1.17539    | 1.5           | 1.29918    | 1.5           | 1.44102    |
| 3             | 1.07323    | 2             | 1.20227    | 2             | 1.27879    | 2             | 1.60044    |
| 4             | 1.07089    | 2.5           | 1.22575    | 2.5           | 1.34573    | 2.5           | 1.61353    |
| 5             | 1.04068    | 3             | 1.22457    | 3             | 1.44056    | 3             | 1.59831    |
| 6             | 1.10304    | 4             | 1.20479    | 3.5           | 1.34722    | 3.5           | 1.64067    |
| 7             | 1.12992    | 4.5           | 1.232      | 4             | 1.4582     | 4             | 1.71128    |
| 9.5           | 1.10856    | 5             | 1.27024    | 4.5           | 1.50602    | 4.5           | 2.04392    |
| 12            | 1.11274    | 5.5           | 1.19652    | 5             | 1.54408    | 5             | 1.94416    |
| 15            | 1.1286     | 6             | 1.28325    | 5.5           | 1.66356    | 5.5           | 1.99879    |
| 20            | 1.14278    | 10            | 1.30975    | 6.5           | 1.64615    | 6             | 2.32306    |
| 25            | 1.12814    | 15            | 1.36033    | 7             | 1.72245    | 6.5           | 2.53988    |
| 29            | 1.1536     | 20            | 1.51513    | 7.5           | 1.80119    | 7             | 2.37135    |
| 35            | 1.16563    | 30            | 1.87861    | 8             | 1.90796    | 7.5           | 2.88049    |
| 51            | 1.22121    | 40            | 2.62192    | 8.5           | 1.95065    | 8             | 3.05582    |
| 72            | 1.32969    | 50            | 3.76481    | 9             | 1.95813    | 8.5           | 3.30927    |
| 84            | 1.43005    | 60            | 5.45427    | 9.5           | 2.02253    | 9             | 3.82171    |
| 99            | 1.54471    | 65            | 10.26433   | 10            | 2.04866    | 9.5           | 4.31219    |
| 118           | 1.61584    |               |            | 10.5          | 2.35735    | 10            | 4.81554    |
| 120           | 1.5795     |               |            | 11            | 2.2524     |               |            |
| 143           | 1.96069    |               |            | 12            | 2.61647    |               |            |
| 154           | 2.04236    |               |            | 13            | 2.66661    |               |            |
| 167           | 2.26105    |               |            | 14            | 3.10576    |               |            |
| 193           | 2.7322     |               |            | 15            | 3.17541    |               |            |
| 215           | 3.25971    |               |            | 16            | 4.13807    |               |            |
| 240           | 3.91152    |               |            | 17            | 4.26916    |               |            |
| 267           | 5.50604    |               |            | 18            | 5.68258    |               |            |
| 290           | 5.90128    |               |            | 19            | 6.97967    |               |            |
| 312           | 8.77478    |               |            | 20            | 8.16226    |               |            |
|               |            |               |            |               |            |               |            |

Table T2: Calculations of the width parameter  $(\alpha_1)$ 

| $t_w$ (hours) | $\alpha_2$ |
|---------------|------------|---------------|------------|---------------|------------|---------------|------------|
| 2.0% w/v      | 2.0% w/v   | 2.5% w/v      | 2.5% w/v   | 3.0% w/v      | 3.0% w/v   | 3.5% w/v      | 3.5% w/v   |
| 0.5           | -0.24034   | 0.58          | -0.18569   | 0.5           | 0.00769    | 0.5           | 0.24693    |
| 1             | -0.21244   | 1             | -0.15234   | 1             | 0.0488     | 1             | 0.44208    |
| 2             | -0.19752   | 1.5           | -0.12475   | 1.5           | 0.09815    | 1.5           | 0.38702    |
| 3             | -0.28886   | 2             | -0.0785    | 2             | 0.05847    | 2             | 0.75497    |
| 4             | -0.29243   | 2.5           | -0.03697   | 2.5           | 0.18898    | 2.5           | 0.78711    |
| 5             | -0.33765   | 3             | -0.03916   | 3             | 0.38603    | 3             | 0.74938    |
| 6             | -0.24266   | 4             | -0.07439   | 3.5           | 0.19166    | 3.5           | 0.85466    |
| 7             | -0.19965   | 4.5           | -0.02609   | 4             | 0.42451    | 4             | 1.03724    |
| 9.5           | -0.23406   | 5             | 0.04385    | 4.5           | 0.53147    | 4.5           | 2.02054    |
| 12            | -0.22773   | 5.5           | -0.08901   | 5             | 0.61953    | 5             | 1.70427    |
| 15            | -0.2023    | 6             | 0.06826    | 5.5           | 0.91324    | 5.5           | 1.8752     |
| 20            | -0.17934   | 10            | 0.11857    | 6.5           | 0.86864    | 6             | 3.00386    |
| 25            | -0.20344   | 15            | 0.21824    | 7             | 1.06717    | 6.5           | 3.86843    |
| 29            | -0.16157   | 20            | 0.55228    | 7.5           | 1.28284    | 7             | 3.18867    |
| 35            | -0.14165   | 30            | 1.50652    | 8             | 1.59404    | 7.5           | 5.40767    |
| 51            | -0.04568   | 40            | 4.21947    | 8.5           | 1.72437    | 8             | 6.28734    |
| 72            | 0.15727    | 50            | 10.45309   | 9             | 1.74562    | 8.5           | 7.66252    |
| 84            | 0.36368    | 60            | 24.4168    | 9.5           | 1.95025    | 9             | 10.82908   |
| 99            | 0.62136    | 65            | 96.6505    | 10            | 2.03587    | 9.5           | 14.34769   |
| 118           | 0.79297    |               |            | 10.5          | 3.1348     | 10            | 18.45914   |
| 120           | 0.70384    |               |            | 11            | 2.74087    |               |            |
| 143           | 1.7556     |               |            | 12            | 4.19569    |               |            |
| 154           | 2.01552    |               |            | 13            | 4.41496    |               |            |
| 167           | 2.77215    |               |            | 14            | 6.54793    |               |            |
| 193           | 4.71058    |               |            | 15            | 6.92068    |               |            |
| 215           | 7.38437    |               |            | 16            | 13.04328   |               |            |
| 240           | 11.43881   |               |            | 17            | 14.01893   |               |            |
| 267           | 24.86205   |               |            | 18            | 26.74489   |               |            |
| 290           | 28.99567   |               |            | 19            | 42.04245   |               |            |
| 312           | 69.0407    |               |            | 20            | 59.04992   |               |            |

Table T3: Calculations of non-Gaussian parameter  $(\alpha_2)$ 

Data acquired at a different scattering angle ( $\theta = 60^{\circ}$ )



**Figure S7:** Intensity autocorrelation functions for a 2.5% w/v sample at scattering angle  $\theta = 60^{\circ}$  for four different waiting times. The solid lines are fits to equation 1.



**Figure S8:** The fast relaxation timescales of a 2.5% w/v Laponite sample, extracted from fits of the data plotted in Figure S5 to equation 1, versus time since preparation of the sample. The solid line is a fit to the modified Arrhenius form (equation 2). A decrease in  $\tau_1$  at very early times, followed by an eventual increase, as highlighted in Figure 2(a), is also present.



**Figure S9:** The mean slow relaxation timescales of a 2.5% w/v Laponite sample, extracted from fits of the data plotted in Figure S5 to equation 1, versus time since preparation of the sample. The solid line is a fit to the modified VFT form (equation 3).



**Figure S10:** The diffusive dynamics of the fast relaxation time  $(\tau_1)$  is shown above for a 2.5% w/v Laponite sample for two different waiting times  $t_w$ . The dashed lines are linear fits passing through the origin.



**Figure S11:** The diffusive dynamics of the mean slow relaxation time is shown above for a 2.5% w/v Laponite sample for two different waiting times  $t_w$ . The dashed lines are linear fits passing through the origin.



**Figure S12:** The fitting parameter (1-a) in equation (1) is plotted for different concentrations of Laponite.