Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2014

Supplementary information

Deformation and dynamics of red blood cells in flow through cylindrical microchannels

Dmitry A. Fedosov, Matti Peltomäki, and Gerhard Gompper

Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Description of supplemental movies

The dynamics of different RBC shapes in capillary flow — snaking discocytes, tumbling discocytes, swinging slippers, and parachutes — is best illustrated by movies described below. For each movie, only a small segment of the simulated capillary is displayed. Blue particles on the RBC are firmly attached to the membrane and serve as tracers in order to visualize the membrane dynamics; these particles have no physical meaning.

Movie S1 (snaking.mpg): The movie illustrates the snaking dynamics of a RBC in the tube flow for $\Gamma = 532, \chi = 0.58$, and $\dot{\gamma}^* = 6$.

Movie S2 (tumbling.mpg): The movie shows the off-center tumbling dynamics of a RBC in the tube flow for $\Gamma = 532$, $\chi = 0.44$, and $\dot{\gamma}^* = 7$.

Movie S3 (slipper.mpg): The movie illustrates the off-center slipper dynamics of a RBC in the tube flow for $\Gamma = 532$, $\chi = 0.58$, and $\dot{\gamma}^* = 9.9$.

Movie S4 (parachute.mpg): The movie shows the parachute dynamics of a RBC in the tube flow for $\Gamma = 532$, $\chi = 0.58$, and $\dot{\gamma}^* = 14.9$.