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I. SILICONE SUBSTRATE FABRICATION

Preparation of a silicone TFM substrate typically con-
sists of bead deposition on a glass slide, deposition of a
uniform layer of silicone, fluorescent bead deposition on
the silicone surface, and finally deposition of an optional
very thin layer of silicone (the thinner, the more accurate
the TFM).

We create uniform layers of silicone by spin-coating the
curing polymer on a glass slide. Silicone is typically pre-
pared by mixing a curer and base. For example, a 3 kPa
gel is produced by a 1:1 weight ratio mixture of CY52-
276A and CY52-276B (Dow Corning Toray). Published
results indicate that Sylgard 184 can be produced with
Young’s moduli covering nearly four orders of magnitude
depending on the ratio of cure to base, [1–7]. However,
we acheived reliable TFM with Sylgard only for moduli
above about 50 kPa. After mixing, the silicone should
be degassed in a vacuum chamber until there are no vis-
ible air bubbles. In our chamber, this takes ∼1 minute
for CY52-276 and ∼30 minutes for Sylgard 184. The
thickness of a spin-coated film depends on spin time,
speed and fluid viscosity. Once the base and cure are
mixed, the silicone viscosity will change over time. Thus
for reproducible results it is helpful to have a standard
delay between mixing and spin-coating. When mixing,
degassing and spin-coating proceed with minimal delay,
a roughly 30 micron film can be created by spinning at
1000-1500 rpm for 60 sec and a 3 micron film can be cre-
ated by spinning at 10000 rpm for 60 sec for both CY52
and Sylgard 184.

Fluorescent beads need to be well-spaced on the sub-
strate surface to ensure accurate tracking of surface
displacements. We deposit the beads on substrates
from suspension, which allows bead spacing to be con-
trolled by their volume fraction in suspension, and the
substrate immersion time. Example images of good
bead densities are shown in the supplementary exam-
ple code package. In some cases, beads will attach
rigidly to the substrate on their own, especially for very
soft silicones. Otherwise, the beads can be covalently
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attached to a silanized substrate. Before deposition,
the glass or silicone substrate is amine-functionalised
by a minimal vapour-deposition of 3-aminopropyl tri-
ethoxysilane (Polysciences). Excess silane can com-
promise substrate mechanical properties. To attach
beads to the amine-functionalised surface, we use
carboxylate-modified fluorescent microspheres (beads)
suspended in a solution containing 3.8mg/mL sodium
tetraborate, 5mg/mL boric acid and 0.1mg/mL 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide (EDC) (Sigma-
Aldrich). For imaging at 100× and 40×, we submerge
silanated substrates in suspensions of 40nm and 100nm
fluorescent beads at a volume fractions of φ ≈ 5 × 10−6

for 60 and 240 sec, respectively.

II. SUBSTRATE CHARACTERISATION

It is important to characterise the material properties
of the substrate for quantifying stresses using TFM. If
the substrate stiffness E & 100kPa, such as for silicone
elastomers with higher cross-linking density, this can be
done with a tensile test on a thin rod of the substrate
material. For small deformations, the stress/strain rela-
tionship should be linear with a slope given by Young’s
modulus. The strain where the linear relationship breaks
down should be recorded – this represents the maximum
strain that should be imposed on the substrate during
the TFM measurement. Poisson’s ratio depends on the
change in length, L, and diameter, d: for small exten-
sions, ν = −(∆d/d)/(∆L/L). For most materials used
in TFM, this value will be near 0.5. This tensile test can
be quickly and crudely done by hanging weights from one
end of a rod and measuring its change in length and diam-
eter. Precise material characterisation can be achieved
with commercial tensile testing equipment (e.g. Instron)
[8].

Tensile testing works well for stiff materials that can
support their own weight, like elastomers. However it is
typically impractical for softer materials like gels, where
we need to characterise mechanical properties in shear
with a rheometer. A traditional rheometer works by
sandwiching a slab of gel between two plates, applying
a torque and quantifying the torque/deformation rela-
tionship [9]. Often one of the plates is actually a shallow
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cone, so that the shear strain is uniform throughout the
slab. Since the instrument is constrained to work in a
fixed geometry, the gel is set in the rheometer with careful
temperature and humidity control (for a hydrogel). To
monitor gel setting, we apply a steady oscillatory strain
(frequency ∼ 1 rad/sec and strain ∼ 1%) while recording
the resulting stress over time. This time sweep allows us
to calculate the storage modulus (related to stiffness, la-
beled G′) and loss modulus (related to viscosity, labeled
G′′) as a function of time. In Fig. 1 (a), we show exam-
ple data for CY-52-276 silicone gel at room temperature.
Eventually G′ should reach a plateau indicating that the
gel is set. In this example, this occurs about two hours af-
ter mixing. Note that the modulus continues to increase
slowly after two hours.

We need the cured substrate to behave like an elastic
solid under static loadings. This can be checked by a
frequency sweep, where G′ and G′” are measured over a
wide range of frequencies by applying a fixed-amplitude
(strain ∼ 1%) oscillatory torque. The material is elas-
tic under static loadings if G′ reaches a plateau value
as frequency approaches 0 rad/s with G′ � G′′. As
TFM applications are static or involve slow loading, one
should use the low frequency value of G′ for characteris-
ing substrate stiffness. Fig. 1(b) on silicone gel shows a
non-zero zero-frequency storage modulus showing elastic
behaviour for static loadings. The plot also shows how
G′ and G′′ curves can crossover at higher frequencies.
TFM analysis will only provide meaningful results when
the stresses applied to the substrate are applied at much
lower frequencies.

The cured substrate needs to behave linear-elastically
under experimental strains so that we can use Hooke’s
law. We check this by performing a strain sweep, ap-
plying oscillatory strain at a constant frequency (∼
1 rad/sec) and measuring the material response over a
range of strains. A linear-elastic regime is shown by
plateau in G′ at low strains. G′ may rise at higher strains,
followed by a sharp decrease, indicating strain stiffening
followed by breakage. Fig. 1(c) shows linear-elastic be-
haviour in shear for . 100% strain in our silicone gel.

To calculate Young’s modulus from G′, we need the
substrate’s Poisson ratio. This can be measured using
tensile testing in a rheometer. The gel is cured in between
the plates of an rheometer, and then stresses are mea-
sured as the plates are pulled apart or compressed. The
loading is plane strain because the rheometer plates con-
fine the gel so that there are no displacements in the in-
plane directions, unlike in the tensile rod test. Note that
stresses build up rapidly in this geometry, so the range of
achievable strains is typically small. In the linear-elastic
regime, extensional stress and strain are related by

σ =
E(1− ν)

(1 + ν)(1− 2ν)
ε =

2G′(1− ν)

(1− 2ν)
ε, (1)

where we have used the relationship G′ = E
2(1+ν) in the

second equality [10, 11]. We insert the measured value of
G′, and use the measured linear relationship between σ

and ε to solve for Poisson’s ratio. Fig. 1(d) shows results
for tensile testing on silicone gel. With this data, and
with G′ from Fig. 1c, we find that ν = 0.495. In general,
incompressible materials like silicone or PAA gels have
ν ≈ 1/2, and so E ≈ 3G′.

III. DATA ANALYSIS

Having imaged the sample, we have to extract the trac-
tion stresses. This involves: (i) calculating bead posi-
tions from image data, (ii) correcting for index of re-
fraction mismatches, (iii) correcting for drift and calcu-
lating displacements, (iv) preparing the data for Fourier
transforming, and (v) using theory to calculate traction
stresses.

A. Converting images to bead positions

We need to track the motion of the embedded fluores-
cent particles from images such as those in the Support-
ing Information stress calculation example. Two com-
mon techniques for converting images to bead positions
are particle tracking and correlation tracking.

Particle tracking follows individual beads between im-
ages. In each image, we identify individual beads as
bright, isolated spots, and find their positions by find-
ing the centroid of each spot. We then track beads from
frame to frame using particle-tracking software which as-
sumes a maximum distance of travel between frames [12].

Particle-tracking software can also be used to find the
z-position of beads from confocal image stacks: We cal-
culate bead x-/y-positions and intensity for each image
in the stack. We then use particle tracking to follow in-
dividual beads through the stack. For each bead, we plot
the intensity as a function of z, and fit a Gaussian curve
through the results. The peak of the Gaussian corre-
sponds to the bead’s z-position.

Particle tracking fails when particles displacements ex-
ceed the mean inter-particle spacing, as it is no longer
possible to uniquely identify particle trajectories. This
sets a limit on the spatial resolution that can be achieved.
For time series, this problem can be avoided by increas-
ing image frequency to avoid large displacements between
images.

Correlation tracking, also known as digital image cor-
relation [13] or particle image velocimetry [14], involves
tracking constellations of particles rather than individual
particles. Unlike particle tracking, correlation tracking
works with the raw image pixel data; individual beads
are not tracked. It compares ‘before’ and ‘after’ images
to find image portions that are most similar – most highly
correlated. The displacements between the images then
correspond to surface displacements of the substrate.
Many different implementations of correlation tracking
exist, each with its own advantages and disadvantages
[15].
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FIG. 1. Silicone rheology tests performed on rheometer ARES-LS1. G′ plotted in red, solid line. G′′ plotted in blue, dashed
line. Plain strain data in dots, black with linear fit solid orange. (a) Time sweep at room temperature at 0.5% strain, 1 rad/sec
(Top left). (b) Frequency sweep at room temperature at 0.5% strain (Top right). (c) Strain sweep at room temperature at 1
rad/sec (Bottom left). (d) Plane strain test at room temperature (Bottom right).

Particle tracking and correlation tracking can be com-
bined to give a more powerful technique, without the
individual disadvantages of the techniques. Hybrid
tracking techniques are useful in scenarios where high-
resolution spatial displacements are required, but parti-
cle movement between frames is too large to use particle
tracking. Then we can use correlation tracking to give
a rough estimate of substrate displacements, followed by
particle tracking to fine tune the measurement of dis-
placement [16].

B. Correcting for index of refraction mismatches.

Measured bead z-positions need to be corrected to ac-
count for refraction when using substrates containing lay-
ers of different materials with different refractive indices,
n. Such discontinuities will often occur in TFM sub-
strates consisting of a coating on a glass slide. They can
also occur when using an immersion fluid for imaging
that has a different n to the substrate. One approach
for obtaining correct z-positions is to use a calibration
device [17]. Alternatively, if the substrate is made of
top and bottom layers with refractive indices nt and nb
respectively, the actual z-positions of beads are related
to measured positions z∗ by z ≈ z∗(nb/nt) [18]. This
correction is an approximation derived from ray optics,

and works for objectives with Numerical Aperture (NA)
. 1.3. For higher NA a more detailed calculation is re-
quired [18]. Glass cover slips typically have a refractive
index of n ∼ 1.52. Polyacrylamide refractive indices vary
in the range 1.34 − 1.4. The refractive index of silicone
is ∼1.4.

C. Calculating displacements and subtracting drift

We now calculate the bead displacements induced by
sample tractions for the top layer of beads. If there
is no drift, the displacements are simply the difference
in bead positions between the attached-sample and ref-
erence states. However typically the substrate drifts
slightly on the microscope between images, and this cor-
rupts the displacement data. We calculate the motion of
the beads held rigid at the base of the substrate, which
only move due to whole-sample rotation and transla-
tion. Drift-free displacements are then determined by
subtracting the calculated drift rotation and translation
from the measured top-bead displacements.

Without a bottom layer of beads, drift can be esti-
mated in two ways. Firstly, we can find a section of
top-layer beads that are far from any surface tractions
(at least a few times the depth of the substrate). Assum-
ing these beads are not affected by traction stresses, we
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can use them as a non-moving reference to subtract drift.
Secondly, we can measure the average rotation and trans-
lation of all the top-layer beads and assume that this is
the sample drift. These approaches should be avoided
where possible, as they only provide estimates of drift;
significant errors in drift calculation can cause large er-
rors in calculated tractions.

D. Preparing the displacement field

We now need to know the displacements on a regular
grid at z = z0 in the substrate for Fourier transforming
later. However, the raw displacement data is randomly-
scattered in the substrate at the fluorescent bead posi-
tions. We transform the data by first removing bad dis-
placement data arising from tracking errors. Second, we
interpolate the displacements to a regular grid. Third, we
pad the data, and apply filters in preparation for Fourier
transformation.

1. Removing bad vectors.

Tracking algorithm errors occur when a bead is paired
with a different bead in subsequent frames. These track-
ing errors appear as abrupt discontinuities in the dis-
placement field. If these are not removed before Fourier
transforming, they cause artifacts in the calculated stress
field.

We use both manual and automated techniques for re-
moving tracking errors. In the manual technique, the
bead displacements are all plotted as arrows. Viewed
like this, tracking errors are typically obvious. These
are selected and deleted by the user. In the automatic
technique, every displacement vector is compared to an
interpolated value based on other bead displacements in
its neighbourhood. If the vector differs from the inter-
polated value by more than a threshold amount, it is
discarded. This method requires specification of the size
of the bead neighbourhood, the interpolation method,
and the allowed tolerance between actual and interpo-
lated values. These should be tuned for each experiment
for optimal results.

2. Interpolating to a regular grid.

We next interpolate the displacement data on to a reg-
ular, 2-d grid at z = z0. The interpolated data should
cover the same area, and have approximately the same
number of data points as the original data. For example,
if there are 900 tracked beads, we choose a 29x29 grid
and interpolate at each of the 30x30 nodes of the grid.
MATLAB has built-in options for interpolating scattered

data onto a grid, such as GRIDDATA. For every grid point,
GRIDDATA fits a function to a set of nearest neighbour
points then evaluates the function at that grid point.

GRIDDATA has several options that can be tuned to op-
timise the final stress calculation. However, one flaw
with methods like this is it ensures that the fitted surface
passes through all data points. This can add significant
artifacts due to noise in particle location measurements.
An alternative is to interpolate data at grid points by
fitting a quadratic function to a user-specified number
of nearest neighbour points. This smooths the data and
reduces abrupt transition between values.

3. Padding the boundaries.

In situations where the force-generating structure ex-
tends outside the field of view or is close to its edge, the
displacements will be non-zero at the edge of the field
of view. This causes ‘ringing’ errors in the calculated
stress field. We eliminate this artefact by padding the
data – adding data points around the original data set
which blend into the original data and then decay away
smoothly to zero in the far field. Selection of a padding
method is a delicate art and depends on the nature of the
data set. In some cases, we pad our data by copying the
unpadded data at the grid edges outwards to fill in the
padding region, and then applying a 2-dimensional Hann
window [19]. We usually choose to double the dimensions
of the original data by padding.

4. Low-Pass Filter.

As described in the main text, we need to remove high-
frequency noise in order to avoid stress artifacts. Thus,
after padding, we use an exponential low-pass filter [20].
The cut-off wavelength should be adjusted for optimal
results. When it is too small, ringing or rippling occurs
in the stress field due to noise amplification. When it is
too long, the fine features of the stress field will become
obscured.

E. Converting displacements into stresses

We calculate the stress field from the cleaned displace-
ment data. We Fourier transform the displacement data
u(x, y, h) to get û(kx, ky, h) evaluated on a regular grid
of wavenumbers (kx, ky). We calculate Qij(kx, ky, h) for
each pair of wavenumbers, and then use Equation (2)
below to convert û into the Fourier-transformed stresses
σ̂(kx, ky, h). Finally we inverse Fourier transform σ̂ to
obtain the traction stresses σ. Note that here we assume
that the top layer of beads are at the surface, so z0 ≈ h.
Using an experimental setup where z0 6= h is not recom-
mended, as it compromises short wavelength resolution.
However tractions can still be extracted, using a modified
Q [4].
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F. The Q matrix

In §3, we showed that displacements and stresses are
linearly related in Fourier space, with

σ̂iz(kx, ky, z = h) = Qij(kx, ky;h) ûj(kx, ky, z = h), (2)

with summation over repeated indices. The matrix Q is
[4]

Q =
E

2(1 + ν)


 0 0 ikx

0 0 iky(
2ν

1−2ν

)
ikx

(
2ν

1−2ν

)
iky 0

 (3)

+

 1 0 0
0 1 0
0 0 2−2ν

1−2ν ,

 ∂M
∂h

M−1

 ,

where M = S sinh(kh) + Ch cosh(kh) and

S =

 (3− 4ν)k2x + 4(1− ν)k2y −kxky −ihkx
−kxky 4(1− ν)k2x + (3− 4ν)k2y −ihky
−ik2hkx −ik2hky (3− 4ν)

 (4)

and

C =

 kk2x kkxky 0
kkxky kk2y 0

0 0 −k

 (5)

with k =
√
k2x + k2y. For the special case of k = 0,

Q(kx = ky = 0;h) =
E

2h(1 + ν)

 1 0 0
0 1 0
0 0 2−2ν

1−2ν

 . (6)

When out-of-plane stresses are negligible, σzz(z = h) ≡ 0, and the solution simplifies significantly [21, 22]. Then,

σ̂xz =
Ekx

2(1− ν2)k

(3− 4ν) cosh2(kh) + (1− 2ν)2 + (kh)2

(3− 4ν) sinh(kh) cosh(kh) + kh
(kxûx−kyûy)

− Eky cosh(kh)

2(1 + ν)k sinh(kh)
(kxûy − kyûx),

(7)

σ̂yz =
Eky

2(1− ν2)k

(3− 4ν) cosh2(kh) + (1− 2ν)2 + (kh)2

(3− 4ν) sinh(kh) cosh(kh) + kh
(kxûx+kyûy)

+
Ekx cosh(kh)

2(1 + ν)k sinh(kh)
(kxûy − kyûx).

(8)

IV. EXAMPLE CODE

Along with this Supporting Information, we have pro-
vided a package with example MATLAB code showing how
to calculate traction stresses. The package contains data
for an Aplysia Californica bag-cell-neuron growth cone on
a soft, silicone TFM substrate. It includes an image of
the cell, and two fluorescent images of the surface beads
with the cell in place, and after its removal.

The code takes measured bead positions from the
two fluorescent images, and converts them into traction
stresses and strain energy density [23]. The example pro-

vided is for 2d traction stresses – the growth cone is as-
sumed to only exert in-plane forces on the substrate. This
is typically a good assumption for cells (e.g. [21, 22]), and
allows traction stresses to be calculated from measure-
ments of in-plane displacements of the fluorescent beads.
The code can be straightforwardly modified to calculate
3d traction stresses.

The code package contains three .tif files (images),
two .mat files (displacement data, and cell outline data),
and six .m files. Run master.m to convert displacement
data into traction forces, and display the results.
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