Supporting Information for

On the LCST Transition of PNIPAM-*b*-PVCL in Water: Cooperative Aggregation of Two Distinct Thermally Responsive Segments

Lei Hou and Peiyi Wu*

The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular

Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China

*corresponding author, email: peiyiwu@fudan.edu.cn

Polymer Synthesis

Synthesis of PNIPAM macro-CTA: NIPAM (3.39 g, 30 mmol), CTA (0.0678 g, 0.3 mmol), AIBN (0.0096 g, 0.06 mmol) and 10 g methanol were added to a dry ampule. The mixture was degassed by three cycles of freeze–evacuate–thaw and then placed in a thermostated oil bath previously maintained at 60 °C. After 24 h, the reaction was stopped by sudden cooling in liquid nitrogen and exposure to air. The polymer was isolated by precipitation into a large excess of diethyl ether and collected by vacuum filtration, then vacuum-dried for 24 h.

Synthesis of PNIPAM₇₅-*b*-PVCL₉₆ was described as follows: PNIPAM macro-CTA (0.56 g, 0.066 mmol), VCL (0.7 g, 10 mmol), AIBN (0.0016 g, 0.01 mmol) were dissolved in 3.8 g methanol. The solution was degassed by three freeze–evacuate–thaw cycles before immersion into a preheated oil bath maintained at 60 °C. The polymerization was conducted for 24 h and then quenched by rapid cooling in liquid nitrogen and exposure to air. After three times' precipitation by diethyl ether, the product was finally vacuum-dried for 24 h.

Bulk homopolymerization of PVCL₆₂: typically, a mixture of VCL (1.39 g, 10 mmol), CTA 0.0236 g, 0.1 mmol) and AIBN (0.0032 g, 0.02 mmol) was added to a dry tube and degassed by three cycles of freeze-vacuum-thaw. Then, the tube was immersed in thermostatic oil bath at 60 °C. After 24 h, the solution was cooled in liquid N_2 and diluted with THF, followed by dropping into a large amount of diethyl ether and collected by vacuum filtration; purification was carried out by repeating dissolution in THF and precipitation from ether, and finally dried under vacuum for 24 h.

Table S1. Molecular characterizations of the polymer samples.

sample ^{<i>a</i>}	$M_{\rm n}({ m SEC})[{ m kg/mol}]^b$	$M_{\rm n}$ (NMR) [kg/mol] ^c	PDI ^d	NIPAM [mol %] ^e
PNIPAM ₇₅	4.5	8.5	1.39	100
PNIPAM ₇₅ -b-PVCL ₄₂	5.7	14.3	1.57	64
PNIPAM75-b-PVCL96	7.5	20.1	1.68	44
PVCL ₆₂	2.1	8.6	1.96	0

^{*a*}Number average degree of polymerization P_n of each component as obtained from M_n (¹H NMR). ^{*b*}Apparent number average molecular weight determined by GPC in DMF using PEG standards. ^{*c*}Determined by ¹H NMR end group analysis taking the mass of the RAFT agent into account. ^{*d*}Apparent dispersities determined by GPC in DMF. ^{*e*}Molar NIPAM ratio determined by ¹H NMR.

Figure S1. GPC traces of PNIPAM₇₅ (black), PNIPAM₇₅-*b*-PVCL₄₂ (red), PNIPAM₇₅-*b*-PVCL₉₆ (blue).

Figure S2. ¹H NMR spectra of PNIPAM₇₅ (black), PNIPAM₇₅-*b*-PVCL₄₂ (red), PNIPAM₇₅-*b*-PVCL₉₆ (blue) and PVCL₆₂ (green).