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S1.  Drop shape calculation using energy minimization

To enable the calculation of the drop shape under conditions of non-constant curvature (i.e., 

when one wishes to account for Van der Waals forces), we developed an algorithm based on the 

minimization of the free energy. In this section, we briefly describe the energy minimization 

algorithm and verify its performance by comparing its predictions with unduloid-based solutions.

We define the functional 
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is the surface energy of the droplet-continuous phase (αβ) interface; 
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is the surface energy of the droplet-solid (ασ) interface; 

(S4)1

2
2

0

d
2 sin d

d
E

 
   


     


 

  
 



is the surface energy of the continuous phase-solid (βσ) interface; and 
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is the volume constraint. All are written in spherical coordinates defined in  Fig. 3. The volume 

constraint is enforced through the Lagrange multiplier λ that corresponds to the static (Laplace) 

pressure in α. In all the above equations, integration about the azimuthal angle has already been 

carried out. The task is to determine the shape of the (αβ) interface  and the position of the   

contact line  that minimizes F.1

Although the contact angle  does not appear explicitly in equations S1-S5, the state that 

minimizes F satisfies Young’s equation. To see this, we consider one of the essential conditions 

of the stationary state:
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The term in front of  is a ratio of arc-lengths and can be replaced with the cosine of the contact 

angle to retrieve the Young’s equation: 
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To minimize F, we resort to numerical techniques. The interface αβ is divided into N 

segments each having an arc length l (see Fig. 3). l is not known a priori and must be determined 
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as part of the solution. The restriction of uniform segments is enforced with an additional pseudo-

energy term: 
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The above constraint prevents the nodes from aggregating in a narrow region. In Fig. 3, nodes are 

labeled with hollow circles and the nth node is highlighted with a solid circle. Node n=1 

corresponds with the contact line. At the contact line, is to be determined while  is available 1 1

from the particle’s geometry. The left-right symmetry is enforced by fixing . The / 2N 

discretized equations are: 
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and 
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We find the stationary state by setting the derivatives of the energy functional with respect to 

all degrees of freedom x to zero. 
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In the above, 

. (S14)     2 3 1 2 1 1 2 1, , , , , , ,N N N l               x

We solve equation S13 with the Newton-Raphson method 
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In the above, the superscript denotes the kth iterate. The first order derivatives and Jacobian matrix 

were determined analytically. The corresponding expressions are lengthy and therefore not 

reproduced here.
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Typically  nodes were sufficient to achieve grid-independence. The energy N ~ 100

minimization code was verified by reproducing known solutions for the cylindrical fiber wetting 

problem [S1]. Fig. S1A compares the energy-minimization solution (hollow circles) with the 

analytical solution (solid line) when . Fig. S1B depicts the relative discrepancy between 45 

the analytical solution and the energy minimization solution for the position of the droplet apex 

(squares) and droplet pinning point (circles) as functions of the number of nodes (N). When 

N>80, the error is smaller than 1%.

Next, we applied the energy minimization algorithm to determine the shape of a drop partially 

engulfing an ellipsoidal particle. Figs. S2A and S2B depict, respectively,  and  as functions *
1z

*
2r

of the volume as determined by the energy minimization method (solid circles) and the unduloid 

solution (solid lines). ε=5 and . Both solution methods produced nearly identical results. 90 

To illustrate the convexity of the energy functional, Fig. S3 depicts the free energy of a fixed 

volume drop as a function of the pinning line position  for various contact angles.1

 Fig. S1: (A) The shape of a drop wetting a cylindrical fiber [12] as obtained with the unduloid method 

(solid line) and the energy minimization method (hollow circles, N=100, not all nodes are plotted).

. (B) The relative discrepancy between the energy minimization and the unduloid predictions of 45 

the droplet apex (squares) and the axial position of the pinning point (circles) as a function of the number 

of nodes (N) used in the discretization of the drop surface; for large N,  the error decreases as .1N 
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Figure S2: The axial position of the pinning line (A) and the drop radius   (B) as functions of 22
* // ar r 

the dimensionless volume .  The solid lines and the symbols denote, respectively, the unduloid solution *V

[S1] and the energy minimization solution. ε=5 and .90 

Figure S3: The penalty function (S1) as a function of the pinning line position  for various contact 1

angles. =3. The energy minima, when present, are denoted with solid circles.
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S2.  Contact Angle Measurement

The three-phase contact angle was measured by an ex-situ experiment using a planar 

polystyrene film. A concentrated solution of polystyrene in toluene (20% w/v) was spin coated 

onto a glass slide with a commercial spin coater (Laurell Technologies Co., WS-400BZ-

6NPP/Lite). The presence of PVA during the microfluidic generation of the polystyrene particles 

and the stretching of the particles into ellipsoids was simulated by spin coating 2% w/w PVA in 

water onto the PS film, followed by three subsequent spin coatings of water to rinse off any 

excess PVA. The composed film was heated to above the glass transition temperature (100oC) of 

Polystyrene using a hot plate [S8]. The film was rinsed with DI water and air dried before the 

contact angle measurement. 

The three phase contact angle was measured with a goniometer (Theta Optical Tensiometer, 

Attension KSV instruments). The continuous phase consists of DI water and the dispersed phase 

of light mineral oil containing a 5% v/v surfactant ABIL EM 90 (Evonik Industries). The average 

contact angle obtained from four different samples prepared in a similar manner was 165.8 ± 5.2 , 

which confirmed the hydrophilic character of the treated polystyrene. The contact angle of interest 

in our work is the supplementary angle 14.2± 5.2 .

S3.  Dimensionless Groups

In the manuscript, we introduced several dimensionless groups to justify our assumptions. The 

various material properties used in these calculations are listed in Table S1. The relevant length 

and velocity scales are tabulated in Table S2 and the values for the dimensionless groups in 

Table S3. The smaller the magnitude of the dimensionless group , the more the interfacial tension 

forces dominate the system’s behavior.

For the elastic modulus of C.elegans, we used the conservative value of 3.77 kPa [S4]. Other 

sources indicate higher elastic moduli for nematodes such as 50 kPa [S5] and 380 MPa  [S6] for 

the cuticle. 
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parameter value
  ϱα 1.00e3 [kg/m ]3
ϱβ 8.3e2 [kg/m ]3
μα 1e-3 [Pa s]
μβ 2.78e-2 [Pa s]
γαβ 1e-3 [N/m]  [S3, S2]
E

CE
3.77e-1[Pa] [S4] 

E
PS

3.6e9 [Pa] [S7]

Table S1: The magnitudes of the various properties used in the calculation of Table S3. The light 

mineral oil’s manufacturer provides the kinematic viscosity at 40oC while the specific gravity is 

given at 15.6oC. Subscripts CE and PS, respectively, denote properties of the C.elegans and 

polystyrene.

parameter value
 

  
r2,D

5e-4 [m]

U 6e-3[m/s]
 a

CE
4e-5 [m]

2b
CE

1.13e-3 [m]
 a

PS
5e-5 [m]

2b
PS

7e-4 [m]

Table S2: Typical velocity and length scales. Subscripts D, CE, and PS denote properties 

belonging to a typical droplet, C.elegans, or polystyrene particle.

quantity value
 Bo 4.17e-1
Ca

β
1.67e-1

We
α

1.80e-2
ΓCE 1.07e6
ΓPS 2.21e-7

Table S3: Estimated magnitudes of the non-dimensional parameters relevant to our system 

S4. How ellipsoidal is the particle?

As a matter of convenience, in the manuscript, we assumed the particles have an ellipsoidal 

shape. To assess the accuracy of our assumption, we compare the profile of several particles to an 

analytical expression for ellipsoids. The profile is obtained by manually selecting N∼50 points 
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along the surface of an imaged particle in ImageJ. The major and minor axes for the analytical 

expression are acquired by circumscribing an ellipse around the particle in ImageJ and matching 

the narrowest and widest portions of the particle. We use polar coordinates to calculate the error 

metric: 
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Five particles were measured; the maximum deviation between the ellipsoids and the actual 

particles was 3.8%. 
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