Supplementary information

Role of the hydrophobic phase for the unique rheological properties of saponin adsorption layers

By Konstantin Golemanov, Slavka Tcholakova, Nikolai Denkov, Eddie Pelan, Simeon D. Stoyanov

Table S1.

Studied saponins. The molecular structures (A) - (E) are shown in Figure S1. The critical micellization concentrations (CMC) were determined by measuring the surface tension isotherms and are presented as weight concentration of saponin in the solution

Table S2

Rheological parameters describing the behavior of adsorption layers of tea saponin or escin on airwater and hexadecane-water interfaces. Results from a creep and recovery experiments were fitted with an appropriate rheological model: escin on Hex-W interface - with the Burgers model, the rest of the systems - with the compound Voigt model.

Table S3

Parameters from the best fit of the experimental data shown in Figure S3 with eq. (8).

Figure S1. Structure of the saponins in the studied extracts. R1–R2 and X1-X3, designate sugar chains with different length and/or composition; X1-X3 can also designate H atom. (A) Monodesmosidic and (B) bidesmosidic triterpenoids with oleanane type of aglycone. (C) Mono- or bidesmosidic triterpenoids with dammarane type of aglycone. Steroid saponins of (D) spirostanol and (E) furastanol type.

Figure S2. Creep and relaxation of different saponin adsorption layers from group LV. The experimental conditions are: $t_A = 30$ min; $t_{CR} = 100$ s; torque $M = 1 \mu N.m.$

Figure S3. Surface storage modulus as a function of aging time for (A) QD adsorption layers and (B) Escin and TS adsorption layers, formed on different interfaces as indicated in the figure. Experiments are performed at constant frequency of 1 Hz and constant strain amplitude of 0.1 %.

<u>**Table S1.</u>** Studied saponins. The molecular structures (A) - (E) are shown in Figure S1. The critical micellization concentrations (CMC) were determined by measuring the surface tension isotherms and are presented as weight concentration of saponin in the solution</u>

Type of aglycone	Molecular structure	Trade Name	Abbreviation used in text	Plant species	Extracted from	Supplier	Concentration of saponin, wt%	CMC, wt % saponin
Triterpenoid	А	Horse chestnut extract	НС	Aesculus hippocastanum	Seeds	Xi'an Biof Bio- technology Co.,Ltd	20	0.146
	А	Escin	ES	Aesculus hippocastanum	Seeds	Sigma	≥95	0.008
	А	Glycyrrhizic acid ammonium salt	LIC	Glycyrrhiza glabra	Roots	Sigma	≥95	Not measured
	A+B	Tea Saponin	TS	Camelia Oleifera Abel	Seeds	Zhejiang Yuhong Import&Export Co., Ltd	96.2	0.017
	A+B	Berry Saponin Concentrate	BSC	Sapindus Mukurossi	Fruits	Ecological Surfactants, LLC	53	≈ 0.1
	A+B	Sapindin	SAP	Sapindus Triofilatus	Fruits	Sabinsa Corporation	50	≈ 0.03
	В	Quillaja Dry 100, Non-preserved	QD	Quillaja Saponaria Molina	Bark	Desert King, Chilie	25.6	0.025
	С	Ginsenosides	GS	Panax Ginseng	Roots	Xianyang Hua Yue Biol. Engin. Co., Ltd.	80	0.019
	-	Ayurvedic Saponin Concentrate	ASC	Acacia concinna	Pods	Ecological Surfactants, LLC	30	≈ 0.3
Steroid	D+E	Tribulus terrestris extract	TT	Tribulus Terrestris	Herb	Sabinsa Corporation	45	0.048
	D+E	Foamation Dry 50	FD	Yucca Schidigera	-	Desert King, Chilie	9	≈ 0.03
	Е	Fenusterols®	FS	Trigonella foenum graecum	Seeds	Sabinsa Corporation	50	0.089

<u>**Table S2**</u>. Rheological parameters describing the behavior of adsorption layers of tea saponin or escin on air-water and hexadecane-water interfaces. Results from a creep and recovery experiments were fitted with an appropriate rheological model: escin on Hex-W interface - with the Burgers model, the rest of the systems - with the compound Voigt model.

D	Teas	Saponin	Escin		
Parameter	A-W	C16-W	A-W	C16-W	
G ₀ , mN/m	460 ± 40	95 ± 3	660 ± 20	210 ± 10	
<i>G</i> ₁ , mN/m	460 ± 50	43 ± 1	2430 ± 300	111 ± 6	
G_2 , mN/m	190 ± 60	8.1 ± 0.6	800 ± 300	-	
η_0 , Pa.m.s	13.2 ± 1.2	1.9 ± 0.2	120 ± 30	1.6 ± 1	
η_1 , Pa.m.s	5.3 ± 0.6	0.5 ± 0.1	31 ± 9	2.9 ± 0.2	
η_2 , Pa.m.s	28.4 ± 2.2	2.1 ± 0.1	135 ± 20	-	
λ_0 , s	27 ± 2	20 ± 1	183 ± 36	7.6 ± 0.3	
λ_1 , s	12 ± 2	13 ± 1	14 ± 4	26 ± 3	
$\lambda_2,$ s	180 ± 60	255 ± 12	190 ± 80	-	

Table S3. Parameters from the best fit of the experimental data shown in Figure S3 with eq. (8).

	QD			Escin		TS	
Parameters	Air-	Hexadecane-	Tricaprylin-	Air-	Hexadecane-	Air-	Hexadecane-
	water	water	water	water	water	water	water
$G_0^{'}$, mN/m	49.8	34.5	16.5	522	164	0	0
$G_1^{'}, \mathrm{mN/m}$	34.6	20.3	6.8	288	216	728	400
G_2' , mN/m	31.5	21.6	6.6	318	363	368	165
$t_{\rm R1}, \min$	17.9	17.5	19.3	18	33	17	75
$t_{\rm R2}, \min$	211	225	227	260	267	192	429
$G'(t \to \infty)$, mN/m	115.9	76.4	29.9	1128	743	1096	565

Figure S1. Structure of the saponins in the studied extracts. R1–R2 and X1-X3, designate sugar chains with different length and/or composition; X1-X3 can also designate H atom. (A) Monodesmosidic and (B) bidesmosidic triterpenoids with oleanane type of aglycone. (C) Mono-or bidesmosidic triterpenoids with dammarane type of aglycone. Steroid saponins of (D) spirostanol and (E) furastanol type.

Figure S2. Creep and relaxation of different saponin adsorption layers from group LV. The experimental conditions are: $t_A = 30$ min; $t_{CR} = 100$ s; torque $M = 1 \mu$ N.m.

Figure S3. Surface storage modulus as a function of aging time for (A) QD adsorption layers and (B) Escin and TS adsorption layers, formed on different interfaces as indicated in the figure. Experiments are performed at constant frequency of 1 Hz and constant strain amplitude of 0.1 %.