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1 Effect of rheological aging on G′ and G′′
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Figure A: G′ and G′′ in a 10% wax in oil system after shear rejuvenation. The fluid is shear rejuvenated
through application of an apparent shear rate of ˆ̇γ = 50 s−1 shear rate for 5 minutes. As can be seen in
the figure, G′ and G′′ increase by 20% or less after the subsequent cessation of steady shear at t = 0.
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2 Effect of IKH parameter values on LAOS data fitting

As discussed in the text, the simple model which describes the evolution in the material microstructure
through the scalar variable λ(t), and the back strain A, captures the correct qualitative form of the
Bowditch-Lissajous figures observed in LAOS. To achieve quantitative agreement with experimental data,
it is necessary to fine tune the yielding parameter C/q and the modulus k3. We illustrate the sensitivity
of the model predictions to changes in these values using the two illustrative figures below. In Fig. B, we
show predictions using the same values of the model parameters as those in Fig. 13 of the manuscript.
For comparison, in Fig. C, the values of C/q and k3 are changed to 0.85 Pa and 1.5 Pa respectively (note
that these are the same values used to fit the model to steady shear data and startup of steady shear in
Figs. 11 and 12). Some quantitative differences are apparent between Figs. B and C, however overall the
qualitative features of the curves are the same.
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Figure B: Fitting of LAOS data for the model waxy crude oil to the MIKH model. Model parameter
values are the same as they are in Fig. 13 of the manuscript (C/q = 0.7 Pa, µp = 0.42 Pa.s, k3=0.7 Pa,
k1/k2 = 0.033 s−1, G = 250 Pa, η = 500 Pa.s, k1 = 0.1 s−1, C = 70 Pa, m = 0.25).
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Figure C: Fitting of LAOS data for the model waxy crude oil to the MIKH model. Model parameter values
are the same as they are in Fig. 11 and 12 of the manuscript (C/q = 0.85 Pa, µp = 0.42 Pa.s, k3=1.5 Pa,
k1/k2 = 0.033 s−1, G = 250 Pa, η = 500 Pa.s, k1 = 0.1 s−1, C = 70 Pa, m = 0.25).
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3 Avalanche effect

In Fig. D below, we illustrate the prediction of delayed yielding (or avalanche effect [1]) predicted by
the MIKH model. The response to creep of the model is simulated for three different applied stresses
(σ0 = 1.9 Pa, σ0 = 1.96 Pa, and σ0 = 2.1 Pa). For consistency, the values of the model parameters
for these simulations are the same as those in Sec. 4.3.2 of the manuscript (G = 250 Pa, η = 500 Pa.s,
µp = 0.42 Pa.s, k1 = 0.1 s−1, k2 = 3, k3 = 1.5 Pa, C = 70 Pa, q = 82 and m = 0.25).The particular values
of the applied stress σ0 are chosen so that they are just below the static yield stress σs ' 2 Pa, just above
the static yield stress, and as close to the static yield stress as possible. As is clear from the figure, when
σ0 = 1.96 Pa, the model predicts an initial slow creeping behavior for the first 1 second, followed by a
sudden yielding beyond a critical strain where the shear rate increases dramatically and the material flows
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Figure D: Delayed yielding (or avalanche effect) predicted by the MIKH model. Values of the model
parameters are the same as those used in Fig. 17 of the manuscript.
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4 Three-Dimensional form of the EIKH model

Below we outline a three-dimensional, frame-invariant form of the elastic isostropic-kinematic hardening
model (EIKH). This three-dimensional form of the model will be analogous to the 1D model shown in
Fig. 10 and described in Sec. 4.1.2, for the case when m = 1 (i.e. a linear function in the recovery term
of the evolution equation for A) and η → ∞ (i.e. purely Hookean elastic response before yielding). The
model discussed here is the same as the three-dimensional form of the KH model discussed in the work by
Dimitriou et. al. [2] with one key difference: The scalar flow law is modified to include an isotropic yield
stress, and this yield stress is a function of the micro structural parameter λ. The nomenclature used here
is the same as that of Gurtin et. al. [3].

The model formulation begins by specifying the Kroner decomposition in which the deformation gra-
dient, F, is multiplicatively decomposed into elastic and plastic components, Fe and Fp respectively.

F = FeFp (1)

This plays the same role that the additive decomposition of strain plays for the 1-D case. The polar
decomposition of the elastic component of the deformation gradient is as follows:

Fe = ReUe (2)

With Re representing a rotation and Ue a stretch. The stretch Ue has the following spectral representation:

Ue =

3∑
i=1

λeir
e
i ⊗ rei (3)

Where λei are the principal values and rei are the principal directions of Ue. From the stretch Ue we can
therefore define the logarithmic elastic strain (Hencky strain) which is as follows:

Ee ≡ lnUe =

3∑
i=1

(lnλei )r
e
i ⊗ rei (4)

The use of the logarithmic elastic strain is typically preferred in order to approximately capture elastic
behavior at large strains. In addition to the definition of Ee, we can define the right (Ce) and left (Be)
elastic Cauchy-Green tensors as follows:

Ce = (Fe)ᵀFe (5)

Be = Fe(Fe)ᵀ (6)

The left Cauchy-Green tensor is also sometimes referred to as the Finger tensor.
The plastic velocity gradient Lp is related to Fp as follows:

Lp = Ḟp(Fp)−1 (7)

Lp can be split into its symmetric and skew (antisymmetric) components, such that Lp = Dp + Wp. One
of the assumptions that goes into this model is that of plastic irrotationality, which assumes Wp = 0,
i.e. there is no plastic spin. We can then write the plastic stretching Dp as a product of its magnitude,
dp = |Dp|, and its direction Np = Dp/dp, so that

Dp = dpNp (8)

We next define the free energy Ψ as follows:

Ψ = G|Ee|2 +
1

2
Λ|trEe|2 + Ψp(A)︸ ︷︷ ︸

defect energy

(9)
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Where G is the shear modulus and Λ is an additional material parameter which was not needed for the
one-dimensional case of the model. It is related to the bulk modulus K through K = Λ + 2G/3. The form
of the free energy Ψ above results (through differentiation of Ψ with respect to Ee) in the following form
for the second Piola elastic stress Te:

Te = 2GEe + Λ (trEe)1 (10)

Where Te is defined as follows:
Te = J(Fe)−1T(Fe)−ᵀ (11)

Where T is the Cauchy stress and J = det(F).
The form of the free energy equation above in Eq. 9 also introduces a defect energy, Ψp, which depends

on the tensor A (which is the three-dimensional generalization of the parameter A. A is symmetric and
unimodular (i.e. det(A) = 1), and has the following spectral representation:

A =

3∑
i=1

aili ⊗ li (12)

Where the li are the principal directions of A. The following simple form of Ψp is used to model the defect
energy:

Ψp =
1

4
C
[
(ln a1)

2 + (ln a2)
2 + (ln a3)

2
]

(13)

In Eq. 13 the back stress modulus C has been introduced. By differentiation of Ψp with respect to A,
Eqns 9 and 13 above result in the following equation for the back stress, Me

back:

Me
back = C lnA (14)

The parameter A is then defined through the following evolution equation:

Ȧ = DpA + ADp − qA(lnA)dp (15)

i.e., the defects in the microstructure are convected by the plastic deformation rate Dp and also consumed
or destroyed by the flow at a rate proportional to the product of the back stress and the current level of
defects in the microstructure. Here we introduce the material constant q. The value of the parameter q
determines the dynamic recovery of A. The effective stress driving the plastic flow, Me

eff, is then given by:

Me
eff = Me

0 −Me
back (16)

Where Me
0 is the deviatoric Mandel stress, and it is associated with an intermediate “structural” space in

the material [3]. The Mandel stress (Me) is defined as:

Me = CeTe (17)

With kinematic hardening we assume that the plastic flow Dp is codirectional with the effective stress
Me

eff, so we have the following additional relation for the direction tensor Np:

Np =
Me

eff

|Me
eff|

(18)

We can then define an equivalent plastic strain rate and equivalent shear stress:

˙̄γp =
√

2dp Equivalent plastic strain rate (19)

σ̄ =
1√
2
|Me

eff| Equivalent shear stress (20)
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Finally, the flow rule is introduced, which gives the relation between the stress σ̄ and the plastic rate
of strain ˙̄γp:

˙̄γp =

(
σ̄ − σy
µp

)
(21)

In the above equation, the isotropic part of the yield stress σy has been introduced, which is related to the
internal scalar structural parameter λ through σy = k3λ. The internal scalar parameter λ is then defined
through the following evolution equation:

dλ

dt
= k1 (1− λ)− k2λ| ˙̄γp| (22)

Which is identical to the evolution equation for λ in the 1-dimensional form of the model in the manuscript.
To summarize the three-dimensional form of the EIKH model involves 8 parameters. Two elastic moduli

below yield G and Λ, a rate constant k1 that describes recovery of the internal microstructure variable
λ, and a nonlinear coefficient k2 that describes the flow induced destruction of the isotropic part of the
microstructure. The isotropic part of the yield stress is related to the microstructure by a modulus k3,
such that σy = k3λ. Beyond yield the flow is controlled by the plastic viscosity µp. Furthermore, there are
the kinematic hardening parameters: the back stress modulus C, and the parameter q which controls the
recovery of the back stress.

Finally, for illustrative purposes, the table below compares the analog equations of the one-dimensional
and three-dimensional forms of the EIKH model.

3D EIKH 1D EIKH

Strain decomposition F = FeFp γ = γe + γp

Elastic stress-strain relation Te = 2GEe + Λ (trEe)1 σ = Gγe

Flow rule Dp =
˙̄γp√
2︸︷︷︸

magnitude

Me
0 − C lnA

|Me
0 − C lnA|︸ ︷︷ ︸

direction

γ̇p = |γ̇p| σ−CA|σ−CA|

Magnitude of strain rate ˙̄γp =
1√
2
|Me

0−C lnA|−k3λ

µp
|γ̇p| = |σ−CA|−k3λ

µp

λ evolution eq. λ̇ = k1(1− λ)− k2λ ˙̄γp λ̇ = k1(1− λ)− k2λ|γ̇p|

A/A evolution eq. Ȧ = DpA + ADp − qA(lnA)
˙̂γp√
2

Ȧ = γ̇p − qA|γ̇p|
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