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Molecular Dynamics Simulation Details

We model the ring polymers using a standard bead-spring
semi-flexible model based on the Kremer Grest1 model. Ev-
ery bead in our simulation interacts via a shifted Lennard-
Jones potential with a cut-off rc = 21/6σ . The gel is itself
made of beads which partially overlap in order to preserve the
topological status of the ring polymer, i.e. unlinked from the
the gel. The beads in the gel interact only with the beads form-
ing the polymers via the same shifted Lennard-Jones potential.
The beads forming the gel are not treated in the dynamics,
meaning that the background structure is fixed and static at all
times. Nearest neighbour beads along the ring polymers inter-
act via a finitely extensible non-linear elastic (FENE) poten-
tial. The non-linear chain’s flexibility is then introduced by an
angular potential. The total intra-chain potential is therefore
given by the following Hamiltonian:

Hintra =
M

∑
i=1

[
UFENE(i, i+1)+

+Ub(i, i+1, i+2)

]
+
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∑
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M

∑
j=i+1

ULJ(i, j) (1)

where M is the number of beads in the ring and the terms with
i > M represent those interactions needed to join the ends of
the polymer in a ring fashion, i.e. a modulo-M indexing is
implicitly assumed to take into account the ring periodicity.
Each monomer has nominal size σ and position ri, while the
distance between two monomers i and j is given by di, j =
|ri−r j|. The finitely extensible non-linear elastic potential is
of the form:

UFENE(i, i+1) =− k
2

R2
0 ln

[
1−
(

di,i+1

R0

)2
]

for di,i+1 < R0 and UFENE(i, i+ 1) = ∞, otherwise; R0 = 1.5
σ , k = 30 ε/σ2 and the thermal energy kBT is set to ε . The
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bending energy, or stiffness term, takes the standard Kratky-
Porod form (discretized worm-like chain):

Ub(i, i+1, i+2) =
kBT ξp

σ

[
1−

di,i+1 ·di+1,i+2

di,i+1di+1,i+2

]
where ξp is the persistence length of the chain which is fixed at
5 σ . Polymers are significantly bent by thermal fluctuations at
contour lengths larger than the Kuhn length lk = 2ξp. Here, the
persistence length ξp is always assumed to be much smaller
than the total length of the chain, so that the chains resemble a
flexible polymer, rather than a rigid rod. The ‘cut and shifted’
Lennard-Jones potential takes the following form:

ULJ(i, j) = 4ε

[(
σ

di, j

)12

−
(

σ

di, j

)6

+1/4

]

for di, j < 21/6 σ and ULJ(i, j) = 0, otherwise. The same po-
tential is also used to regulate all the pair interactions between
monomers belonging to the chain and the fixed mesh. The
chain-mesh Hamiltonian is:

Hchain−mesh =

Mgel

∑
k=1

M

∑
i=1

ULJ(k, i) (2)

the index i runs over the beads in the chain and k runs over
the beads forming the mesh. The bead mass is m and the
friction acting on each bead is set to ξ/m = τ

−1
LJ . The inte-

gration is performed in the over-damped limit of the Langevin
equation using Verlet algorithm with time step ∆t = 0.01 τLJ ,
as in previous works2,3 . The ring is initialised outside the
mesh in a easily parametrisable fashion. Initially, a short run
is performed where instead of the Lennard-Jones potential,
we employ a soft repulsive potential between bonded beads
with energy Es = 40ε and cutoff rs = 21/6 σ . In this way we
gently push the bonded monomers apart and avoid numerical
blow ups. After this short run, the soft potential is replaced
by the Lennard-Jones potential described above. At this point
we drag the polymer inside the mesh by applying an external
force on some of the monomers. Once the ring is completely
contained in the gel we adapt the simulation box in order to
perfectly fit the size of the gel and test the ring topology. If the
ring is in a unknotted state we proceed with the equilibration
run.
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Equilibrium Configuration

The presence of the gel with lattice spacing comparable with
the polymer Kuhn length forces the chain to spread across
multiple unit cells. The equilibrium configuration resembles
that assumed by a lattice animal (see Fig. 1).

Fig. 1 Equilibrium configuration of the ring polymer in gel. The
shape resembles that of a lattice animal. Highlighted in red, two
segments of the chain which are about to self-thread. The gel
structure is here thinned for clarity.

In order to study the scaling of the gyration radius of the
polymer we compute R2

g of portions (much longer than the
Kuhn length) of the chain. Our findings are shown in Fig. 2.
We report a scaling law R2

g ∼ M0.95±0.05 that is in agreement
with the values of ν found in the main text.
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Fig. 2 Radius of gyration squared R2
g for different contour lengths,

averaged over different starting points along the chain. The fit
suggests values of the entropic exponent ν in agreement with those
found by the Kinetic Monte Carlo approach described in the main
text.

References
1 K. Kremer and G. S. Grest, The Journal of Chemical Physics, 1990, 92,

5057.
2 J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Grosberg and K. Kremer,

The Journal of chemical physics, 2011, 134, 204904.
3 J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Grosberg and K. Kremer, J.

Chem. Phys., 2011, 134, 204905.

2 | 1–2


