Micellization and Related Behavior of Sodium Dodecylsulfate in Mixed

Binary Solvent Media of Tetrahydrofuran (Tf) and Formamide (Fa) with

Water: A Detailed Physicochemical Investigation

A. Pan,^a B. Naskar,[‡]^a G. K. S. Prameela,^b B. V. N. Phani Kumar,^b V. K. Aswal,^{*c} S. C.

Bhattacharya,^a A. B. Mandal,^{b*} and S. P. Moulik^{*a}

^aCentre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India Phone: +91-33-2414-6411; Fax: +91-33-2414-6266. E-mail: <u>spmcss@yahoo.com</u> [‡]Present Address: Institut de Chimie Separative de Marcoule (ICSM), UMR 5257 CCEA/CNRS/UM2/ENSCM), Bagnols-Sur-Ceze-3026, France ^bChemical Physics Laboratory and Chemical Laboratory, Central Leather Research Institute, Chennai-600020, India Phone: +91-44-2491-0846; Fax: +91-44-2491-2150 E-mail: <u>abmandal@hotmail.com</u>

^cSolid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai- 400 085, India

Phone: +91-22-2559-4642; *Fax:* +91-22-2550-5150 *E-mail:* <u>vkaswal@barc.gov.in</u>

Figure S1: Temperature solubility diagram of SDS in (A) Fa-W and (B) Tf-W medium.

Figure S2: Enthalpy-entropy compensation plots for the micellization of SDS in Tf-W and Fa-W mixed media. The plots are least squared.

Figure S3: Relative viscosity of SDS solution in Tf-W and Fa-W mixed solvent media at 303 K., (A): 10, 30 and 70 vol% of Tf and (B): 70 v% of Fa in main plot, (**Inset**): 100 v% Fa.

Figure S4: ²³Na relaxation (T_1) vs [SDS] in differentTf-D₂O (5, 10, 25, 35, 70 and 95 v%) mixed systems.

Figure S5: Free energy of micellization (ΔG_m^0) vs solvent parameters in different Tf-W and Fa-W mixed solvent media at 303 K. (A): Dependence on 1/ ϵ ; (B): Dependence on η_o ; (C): Dependence on G; (D): Dependence on E_T(30).

Text S1: All the thermodynamic calculations were done in the rational scale. The rational activity coefficient, f_{\pm} for electrolyte in mixed solvent is defined by the following relation;

$$\ln f'_{\pm} = \ln f_{\pm} + \frac{n}{\nu} \ln a_{w} + \ln \frac{S + T + \nu - n}{S + T + \nu}$$

Where, n = Solvation number, here taken as 6 for SDS molecule

v = Number of ionic species formed in solution, here v = 2

 a_{W} = Mole fraction of water of the mixed solvent

S = Mole of water, and T = Mole of the other liquid

The required $\ln f_+$ has been obtained from the Debye-Hückel equation modified by

Guggenheim:
$$\left(\log f_{\pm} = -\frac{A|Z_{+}Z_{-}|\sqrt{I}}{1+\sqrt{I}} + bI\right)$$
, where $A = (1.8246 \times 10^{6})/(\varepsilon T)^{3/2} \operatorname{mol}^{-1/2} L^{1/2} K^{3/2}$,

 Z_+ and Z_- are the ionic charges of Na⁺ and DS⁻, respectively, *I* is the ionic strength of the solution and *b* is an adjustable parameters taken as $0.1|Z_+Z_-|$ according to Davies.

(Reference: Robinson, R. A. and Stokes, R. H. *Electrolyte Solutions*, Butterworths Scientific Publications: London, 1955. pp – 229-230; 251-252)

Solvent	Dielectric constant ^a		Reichardt's parameter		Gordon parameter ^b		Viscosity	
composition	(3)		$(E_T 30 / \text{kcal mol}^{-1})$		(G / Jm^{-3})		(η_o / cp)	
(V %)	W / Tf	W / Fa	W / Tf	W / Fa	W / Tf	W / Fa	W / Tf	W / Fa
0	76.36	76.36	63.1	63.1	2.69	2.69	0.798	0.798
1	75.43	76.74	62.8	63.0	2.42	2.66	0.823	0.800
2	74.48	-	62.6	-	2.27	-	0.837	-
3	-	77.17	-	62.9	-	2.63	-	0.809
4	73.47	-	62.0	-	2.09	-	0.893	-
5	-	77.59	-	62.7	-	2.59	-	0.818
6	70.46	-	61.5	-	1.99	-	0.917	-
10	67.01	78.74	60.6	62.4	1.79	2.54	1.002	0.837
15	63.56	-	-	-	1.65	-	-	-
20	59.39	82.98	58.1	61.7	1.47	2.46	1.220	0.893
30	55.09	85.73	55.7	61.1	1.25	2.37	1.383	0.967
40	47.84	89.44	53.1	60.4	1.18	-	1.474	1.046
50	39.08	93.57	51.1	59.7	1.05	2.26	1.524	1.154
60	30.62	97.69	-	59.1	0.98	2.17	1.339	1.291
70	23.63	102.28	45.7	58.3	0.91	2.09	1.144	1.473
80	17.67	105.16	-	57.5	0.85	1.98	0.885	1.739
90	9.84	-	40.1	56.6	0.79	-	0.649	2.147
100	7.27	107.97	37.4	55.4	0.67	1.71	0.454	2.846

Table S1: Various physicochemical parameters of the mixed solvents (Tf-W and Fa-W) media at 303 K.^a

^a, Dielectric constant values of solvent mixtures are obtained from literature.¹²

^b. The Gordon parameter was calculated from the relation $G = \gamma / \overline{V}_m^{1/3}$ (\overline{V}_m is the molar volume of the mixed solvents). $\overline{V}_m = \sum X_i V_{m,i}$, where X_i and $V_{m,i}$ represent mole fraction and molar volume of i th solvent, respectively.