
Complexation between polyallylammonium cation and polystyrenesulfonate anion; the effect of ionic strength and electrolyte type

SUPPORTING INFORMATION

Josip Požar and Davor Kovačević

Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia

Figure S1. TEM photography of precipitate obtained by titration of sodium polystyrenesulfonate with polyallylammonium chloride at r = 1.

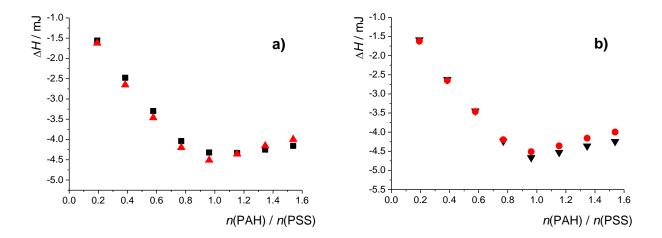
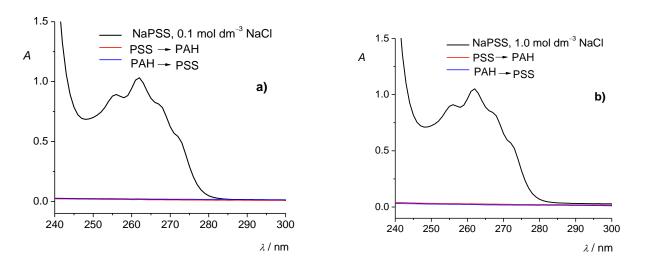
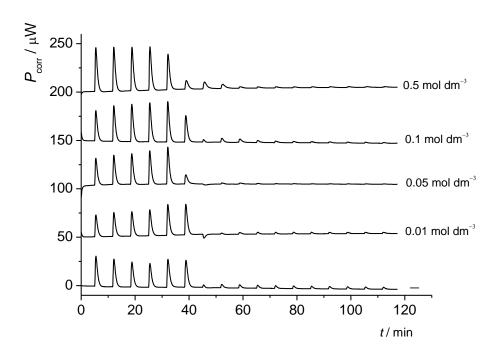




Figure S2. a) Cumulative enthalpy changes obtained by titration of sodium polystyrenesulfonate ($c_{\rm m} = 5 \times 10^{-3}$ mol dm⁻³, $V_0 = 1.3$ mL) with polyallylammonium chloride ($c_{\rm m} = 5 \times 10^{-2}$ mol dm⁻³) at different stirring rates ($\blacksquare - 50$ rpm, $\blacktriangle -300$ rpm), titrant delivery rate: 300 μ l min⁻¹, $\theta = (25.0 \pm 0.1)$ °C.

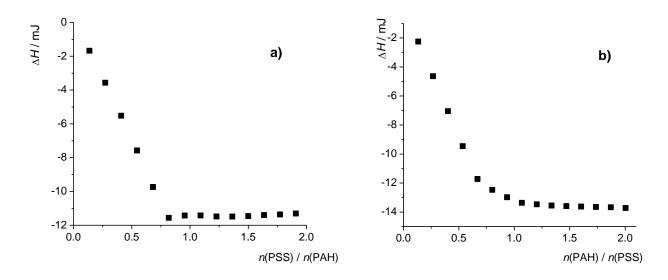

b) Cumulative enthalpy changes obtained by titration of sodium polystyrenesulfonate ($c_{\rm m} = 5 \times 10^{-3}$ mol dm⁻³, $V_0 = 1.3$ mL) with polyallylammonium chloride ($c_{\rm m} = 5 \times 10^{-2}$ mol dm⁻³) at different titrant delivery rates ($\bullet - 50$ μ l min⁻¹, $\blacktriangledown - 300$ μ l min⁻¹), stirring rate: 300 rpm, $\theta = (25.0 \pm 0.1)$ °C.

Figure S3. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r=1 ($\theta=25.0\pm0.1$ °C). (r- ratio of oppositely charged monomers. NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m}=3.3\times10^{-3}$ mol dm⁻³), in NaCl (c=0.1 mol dm⁻³) (**a**) and (c=1.0 mol dm⁻³) (**b**).

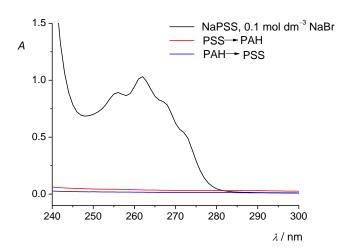


Figure S4. Thermograms obtained by titration polyallylammonium cation ($c_{\rm m} = 5 \times 10^{-3} \text{ mol dm}^{-3}$, V = 1.3 mL) with polystyrenesulfonate anion ($c_{\rm m} = 6 \times 10^{-2} \text{ mol dm}^{-3}$) in NaCl (aq), $\theta = (25.0 \pm 0.1)$ ° C.

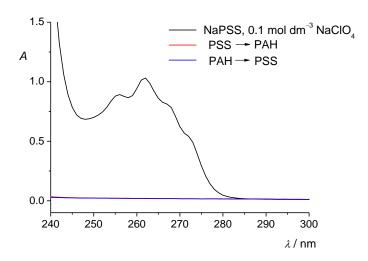


Figure S5. a) Cumulative enthalpy changes obtained by titration of polyallylammonium chloride ($c_{\rm m} = 5 \times 10^{-3}$ mol dm⁻³, $V_0 = 1.3$ mL) with sodium polystyrenesulfonate ($c_{\rm m} = 6 \times 10^{-2}$ mol dm⁻³) in 0.1 mol dm⁻³ NaCl, $\theta = (25.0 \pm 0.1)$ °C.

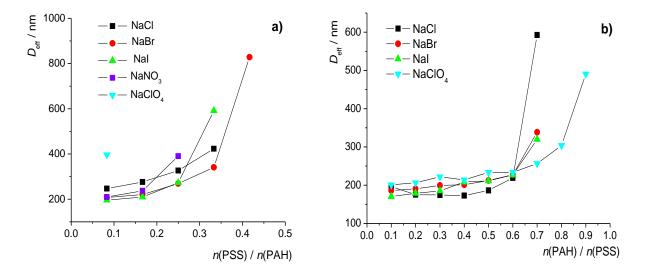

b) Cumulative enthalpy changes obtained by titration of sodium polystyrenesulfonate ($c_{\rm m} = 5 \times 10^{-3} \text{ mol dm}^{-3}$, $V_0 = 1.3 \text{ mL}$) with polyallylammonium chloride ($c_{\rm m} = 7.5 \times 10^{-2} \text{ mol dm}^{-3}$) in 0.1 mol dm⁻³ NaCl, $\theta = (25.0 \pm 0.1)$ °C.

Figure S6. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r=1 ($\theta=25.0\pm0.1$ °C). (r- ratio of oppositely charged monomers. NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m}=3.3\times10^{-3}$ mol dm⁻³), in NaBr (c=0.1 mol dm⁻³).

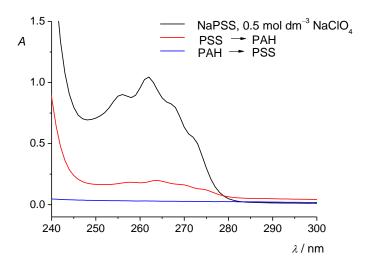


Figure S7. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r = 1 ($\theta = 25.0 \pm 0.1$ °C). (r – ratio of oppositely charged monomers. NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m} = 3.3 \times 10^{-3} \text{ mol dm}^{-3}$), in NaClO₄ ($c = 0.1 \text{ mol dm}^{-3}$).

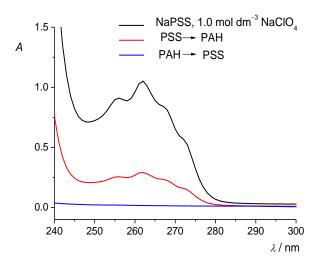
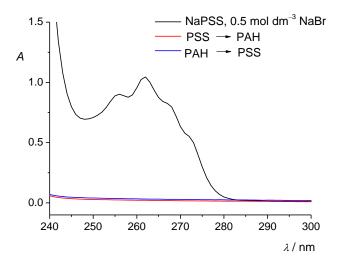


Figure S8.a) Hydrodynamic diameters of colloid complexes obtained by titration of polyallylammonium cation $(c_{\rm m}=1\times10^{-3}~{\rm mol~dm^{-3}},~V=2~{\rm mL}$) with polystyrenesulfonate anion $(c_{\rm m}=1.7\times10^{-2}~{\rm mol~dm^{-3}})$ in NaX (aq, $c=1.0~{\rm mol~dm^{-3}}$) at 25 °C.


b) Hydrodynamic diameters of colloid complexes obtained by titration of polystyrenesulfonate anion ($c_{\rm m}$ = 1×10^{-3} mol dm⁻³, V=2 mL) with polyallylammonium cation ($c_{\rm m}=2.0\times10^{-2}$ mol dm⁻³) in NaX (aq, c=1.0 mol dm⁻³) at 25 °C.

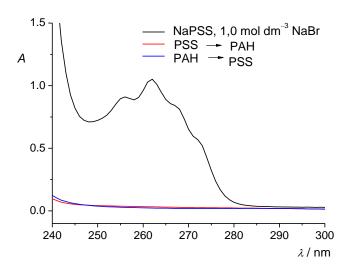

Figure S9. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r=1 ($\theta=25.0\pm0.1$ °C). (r- ratio of oppositely charged monomers. NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m}=3.3\times10^{-3}~{\rm mol~dm^{-3}}$), in NaClO₄ ($c=0.5~{\rm mol~dm^{-3}}$).

Figure S10. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r=1 ($\theta=25.0\pm0.1$ °C). NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m}=3.3\times10^{-3}~{\rm mol~dm^{-3}}$), in NaClO₄ (c = 1.0 mol dm⁻³). The analytical concentration of positively and negatively charged monomers was always equal to monomer concentration in NaPSS.

Figure S11. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r = 1 ($\theta = 25.0 \pm 0.1$ °C). (r – ratio of oppositely charged monomers. NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m} = 3.3 \times 10^{-3} \, {\rm mol \ dm^{-3}}$), in NaBr ($c = 0.5 \, {\rm mol \ dm^{-3}}$).

Figure S12. Spectra of supernatants obtained by centrifugation of suspensions prepared by titration of polycation with polyanion (PSS \rightarrow PAH) and *vice versa* (PAH \rightarrow PSS) at r=1 ($\theta=25.0\pm0.1$ °C). NaPSS - spectrum of sodium polystyrenesulfonate ($c_{\rm m}=3.3\times10^{-3}~{\rm mol~dm^{-3}}$), in NaBr ($c=1.0~{\rm mol~dm^{-3}}$). The analytical concentration of positively and negatively charged monomers was always equal to monomer concentration in NaPSS.