Journal Name

ARTICLE

RSCPublishing

Supporting Information

Driving a Planar Model System into the 3rd Dimension: Generation and Control of Curved Pore-Spanning Membrane Arrays

www.rsc.org/

Martin Gleisner⁺, Ingo Mey⁺, Mariam Barbot[¶], Christina Dreker[¶], Michael Meinecke[¶]⁺, Claudia Steinem^{*}⁺

Fig. S1 depicts a representative scanning electron microscope (SEM) image (top view) of a porous substrate used for the experiments. SEM measurements were performed with a LEO Gemini 1530 SEM with acceleration voltages between 1 and 6 kV.

Fig. S2 displays fluorescence images of Texas Red DHPE (A) labelled pore-spanning membranes (DPhPC/PIP₂ 99:1) after the addition of Alexa488-labelled ENTH domain (B). The membranes were imaged 40 min after ENTH domain addition. The overlay of both fluorescence images (C) show the co-localization of both fluorophores indicating a homogeneous binding of ENTH domain to the membranes.

Fig. S2. Confocal laser scanning fluorescence microscopy image of **A**. Texas Red DHPE labelled protruded pore-spanning DPhPC/PIP₂ (99:1) membranes after applying an osmolarity gradient of 19 mOsmol/L, and **B**. Alexa488-labelled ENTH domain ($c = 3 \mu$ M) bound to the membranes. **C.** Overlay of the fluorescence images of **A**. and **B**. Scale bars: 5 μ m.

Fig. S3 shows individual time traces of the relative radius r/r_0 of pore-spanning DPhPC/PIP₂ (99:1, μ m, $n_0 = 73$) to show the deviation within an experiment.

Fig. S3. Change of the radius of individual protruded pore spanning membranes composed of DPhPC/PIP₂ (99:1) as a function of time (gray solid lines) after the addition of 3 μ M ENTH domain (t = 0 min). The osmolarity gradient was set to 19 mOsmol/L. The thick black line is the average curve calculated from the $n_0 = 73$ individual curves.

Fig. S4 illustrates the calculated change in height *h* of the protrusions as a function of the lateral membrane tension σ as obtained from eq. (5) and (6) for an osmolarity gradient of $\Delta O = 19$ mOsmol/L.

Movie S1 shows a time series of three dimensional confocal fluorescence *z*-stack images of pore-spanning membranes (DPhPC/PIP₂ 99:1, labelled with Texas Red DHPE after applying an osmolarity gradient of 19 mOsmol/L). Data were acquired with a spinning disk confocal fluorescence microscope and the images were rendered using the program IMARIS. ENTH domain (3 μ M) was added at *t* = 0 s. Shrinking as well as growing of pore-spanning membranes is visible.