Binding to semiflexible polymers: a novel method to control the

structures of small numbers of building blocks

Dong Zhang¹, Linxi Zhang^{2, *)}

¹Department of Physics, Zhejiang University, Hangzhou 310027, China

²Department of Physics, Wenzhou University, Wenzhou 325035, China

^{*} Corresponding author. E-mail: lxzhang@zju.edu.cn.

Figure Captions

- Figure S1 (a) Measurements of some related parameters in a simulation run and the comparisons of the bending and binding energies between the bridging (domain A) and the aggregating (domain B) phases in the two-particle case for semiflexible chains with a moderate bending energy $b = 140k_BT$. (b) Typical simulation snapshots at different simulation times: (i) $t = 1.5 \times 10^5 \tau_0$; (ii) $t = 3 \times 10^5 \tau_0$; (iii) $t = 4.5 \times 10^5 \tau_0$; and (iv) $t = 5.5 \times 10^5 \tau_0$.
- Figure S2. The dynamic process of the formation of a linear contact aggregation structure for small numbers of particles at moderate polymer stiffness $b = 140k_BT$. Here $N_p = 8$.
- Figure S3. A star semiflexible chain model used to explore the self-woven helical cage of semiflexible chains, in which there are 10 arms and each arm contains N=200 monomers.
- Figure S4 (a) Small numbers of binding particles ($N_p = 20$) are aggregated in a linear contact manner to form a rod-like structure, in which the star chains wrap around the rod-like structure to form a cage. (b) Main view of a self-woven helical cage on the XZ plane, where different arms are represented by different colors.
- Figure S5. A possible structure transition for small numbers of regular tetrahedron building blocks when the polymer bending energies are increased.

Figure S1(a)

Figure S1(b)

Figure S3

Figure S4(a)

Figure S4(b)

Figure S5

	Number of constructed	Number of	Number of polymer	Binding
	particles per building	building blocks	monomers (N)	interaction
	block (N_c)	(N_b)		(D_0/k_BT)
Rod	5	3	1000	10
Regular	6	5	1500	8
triangle				
Regular	7	5	1500	8
hexagon				
Regular	10	6	1500	5
tetrahedron				

 Table S1 Related simulation parameters used to explore the structures of non-spherical building blocks.