Electronic Supplementary Information

Hydrodynamics and Propulsion Mechanism of Self-Propelled Catalytic Micromotors: Model and Experiment

Longqiu Li,^{1*} Jiyuan Wang,^{1,2} Tianlong Li¹, Wenping Song¹, and Guangyu Zhang¹ *longqiuli@gmail.com

¹Harbin Institute of Technology, Harbin 150001, P. R. China

²Heilongjiang University of Science and Technology, Harbin 150022, P. R. China

1. Calculation of the bubble departure radius using an iterative procedure

Solving for the bubble departure radius at a given inclination angle θ , length of micromotor L and H_2O_2 concentration requires an iterative procedure. Using the initial value of the bubble volume V_0 , the contact angle φ_0 , the initial time t_0 and the time step Δt , the iteration method of the flowchart, as shown in Fig. S1, is used for calculation until it converges. Here we take the surface tension, the viscosity and the density of hydrogen peroxide at 25 °C, σ =73mN/m, μ =0.896~0.927mPa•s, and ρ_l =1.0074~1.0505g/mL, respectively. All other parameters are used as following: the oxygen density ρ_g =1.325 kg/m³, and the gravitational acceleration g=9.8N/kg. ^{S1-S3}

Fig. S1 Flowchart of the iterative procedure.

References

- [S1] M. K. Phibbs and P. A. Giguere, Can. J. Chem., 1951, 29, 173-181.
- [S2] M. F. Eastonm, A. G. Mitchell and W. F. K. Wynne-Jones, Trans. Faraday Soc., 1952, 48, 796-801

[S3] Pečar, D. Resnik, M. Možek, U. Aljančič, T. Dolžan, S. Amon and D. Vrtačnik, Informacije Midem-Journal of Microelectronics, Electronic Components and Materials, 2013,42,103-110.

2. Derivation of the dimensionless parameter c_1

Fig. S2 A schematic of the forces acting on an axisymmetric body when it is in a fluid system.

The resistance force of an axisymmetric body moving in a fluid can be written in the form: ²⁸

$$F = \frac{4\pi\mu aU}{\ln(\frac{2a}{b}) + c_1} + O\left\{\frac{\mu aU}{(\ln a/b)^3}\right\}$$
(S1)

where F is the resistance force on the micromotor, μ is the fluid viscosity, U is the velocity of an unbounded fluid, c_1 depends on the body shape and is given by

$$c_{1} = -\frac{1}{2} + \frac{1}{4} \int_{-1}^{1} \ln[\frac{1-s^{2}}{\lambda^{2}(s)}] ds$$
 (S2)

Assuming the micromotor has a conical shape, the radius of any point P on the surface of micromotor can be expressed as

$$r = b\lambda(s) = b(1 + \frac{a\tan\delta}{b}s)$$
(S3)

Hence, $\lambda(s)$ can be expressed as

$$\lambda(s) = 1 + \frac{a \tan \delta}{b} s \quad for \qquad -1 \le s \le 1$$
(S4)

where $a = \frac{L}{2}$, $s = \frac{l}{a}$, $b = R_{\text{max}} - a \tan \delta$, and *l* is the distance along the micromotor center-line, *L*, R_{max} and δ are the length, the radius for a larger opening and the semi-cone angle of the micromotor, respectively.

$$c_{1} = -\frac{1}{2} + \frac{1}{4} \int_{-1}^{1} \ln\left[\frac{1-s^{2}}{(1+\frac{a\tan\delta}{b}s)^{2}}\right] ds$$

$$= -\frac{1}{2} + \frac{1}{4} \left[\int_{-1}^{1} \ln(1-s^{2}) ds - \int_{-1}^{1} \ln(1+\frac{a\tan\delta}{b}s)^{2} ds\right]$$

$$= -\frac{1}{2} + \frac{1}{4} \left\{4\ln 2 - \frac{2b}{a\tan\delta} \left[(1+\frac{a\tan\delta}{b})\ln(1+\frac{a\tan\delta}{b}) - (1-\frac{a\tan\delta}{b})\ln(1-\frac{a\tan\delta}{b})\right]\right\}$$
(S5)

3. Additional ESI files: Videos of the motion of micromotors in different H_2O_2 solution concentration: Supplementary movie 1 and Supplementary movie 2.

4. Forces acting on a micromotor for a typical loading cycle in X direction and Y directions.

As we can see, the surface tension force F_{re} , the inertial force F_i , and the gas momentum force F_g are close to zero and can be neglected.

Fig. S3 Forces acting on a micromotor as a function of time in: (a) X direction and (b) Y direction, respectively.