Supporting information

Nanostructured Fluids from Degradable Nonionic Surfactants for the Cleaning of Works of Art from Polymer Contaminants

Michele Baglioni^{a#}, Martina Raudino^a, Debora Berti^a, U. Keiderling^b, Romain Bordes^c, Krister Holmberg^{*c}, Piero Baglioni^{*a#}.

^aDepartment of Chemistry and CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy

^bHelmholtz Zentrum Berlin, D-14109 Berlin, Germany

^cDepartment of Chemical and Biological Engineering, Chalmers University of Technology,

Göteborg, Sweden

*Corresponding authors: Piero Baglioni; e-mail: baglioni@csgi.unifi.it, phone: +39 055 457 3033 -

Krister Holmberg; e-mail: krister.holmberg@chalmers.se, phone: +46 31 772 2969

No kinship exists among these authors.

Table S1. Viscosity (Pa·s) of D₂O/MEK was measured as a function of temperature using a Ubbelhode viscosimeter immersed in a thermostatic bath. D₂O has a viscosity of 1.11 Pa·s, while MEK has a viscosity of 0.80 Pa·s at 20 °C. The table reports the unusual behavior of the mixture: while the viscosity for a given MEK concentration decreases when temperature is raised, increasing MEK concentration results in a higher viscosity, which is unexpected in view of the viscosities of the two solvents alone.

MEK	25°C	35°C	45°C
concentration			
4	0.9393	0.744	0.6049
8	1.0413	0.8006	0.6469
13.5	1.3737	1.0404	0.7659
20	1.3134	0.9941	0.7783

Table S2. Molecular properties of the chemicals used in SANS experiments. The alkyl portion of the two surfactants was considered as composed of 10 C atoms on average, while no distinction was taken into account between the 5.5 EO groups of NR and the 6 EO groups of BR.

Compound	Formula	Molecular mass (g/mol)	SLD (10 ⁻⁶ Å ⁻ 2)
Heavy water	D ₂ O	20.04	6.39
BR	C ₁₀ H ₂₁ (CH ₂ CH ₂ O) ₆ O H	422.6	0.37
BR tail	C ₁₀ H ₂₁	141.2	-0.41
BR head	(CH ₂ CH ₂ O) ₆ OH	281.4	0.97
MEK	(C ₂ H ₅)CO(CH ₃)	72.11	0.17

Fitting	BR – MEK	BR – MEK	BR – MEK	BR – MEK	BR – MEK
parameter	0%	4%	8%	13.5%	20%
φ	0.051	0.048	0.045	0.043	0.049
r (Å)	16.6	15.6	15.5	14.4	14.1
poly	0.39	0.38	0.36	0.38	0.40
t (Å)	7.7	8.0	6.1	4.7	4.5
SLD _{core} (Å ⁻²)	-4.1·10 ⁻⁷	-4.1·10 ⁻⁷	-4.1·10 ⁻⁷	-4 .1·10 ⁻⁷	-2.8·10 ⁻⁷
SLD _{shell} (Å ⁻²)	3.1.10-6	3.5.10-6	2.2.10-6	1.0.10-6	9.1·10 ⁻⁷
SLD _{bulk} (Å ⁻²)	6.4.10-6	6.0.10-6	5.7.10-6	5.3·10 ⁻⁶	4.9.10-6
K ₁	6.7	5.5	6.5	6.5	10.5
Z1	31.0	34.7	34.8	34.8	25.4
K ₂	-1.3	-0.9	-1.7	-1.7	-0.5
Z_2	11.7	4.0	3.9	3.9	2.3
N _w	8.5	12.1	3.9	0.1	0.3
N _{agg}	62	51	50	40	30

Table S3. SANS fitting parameters for the BR-based systems.

Table S4. SANS fitting parameters for the NR-based systems.

Fitting	NR – MEK				
parameter	0%	4%	8%	13.5%	20%
φ	0.051	0.048	0.045	0.042	0.038
a (Å)	489.9	-	-	-	317.4
b (Å)	14.4	-	-	-	17.3
r (Å)	-	15.9	16.8	16.2	-
poly	-	0.47	0.44	0.46	-
t (Å)	14.5	8.3	7.6	6.2	15.9
SLD _{core} (Å ⁻²)	-4.1·10 ⁻⁷	-4.1·10 ⁻⁷	-4.1·10 ⁻⁷	-4.1·10 ⁻⁷	-2.1·10 ⁻⁷
SLD _{shell} (Å ⁻²)	4.1.10-6	3.6.10-6	2.9.10-6	2.1.10-6	4.0.10-6
SLD _{bulk} (Å ⁻²)	6.4.10-6	6.0·10 ⁻⁶	5.7.10-6	5.3.10-6	4.9.10-6
K ₁	4.2	21.1	20.2	20.2	10.0
Z_1	36	25.1	25.1	25.1	35.6
K ₂	-1.3	-2.2	-4.1	-4.0	-3.3
Z_2	9.0	20.0	20.0	20.0	9.0
N _w	18.9	12.8	7.7	3.6	25.5
N _{agg}	1367	54	64	57	857