Supporting Information for:

Discovery of a Tetracontinuous, Aqueous Lyotropic Network Phase with Unusual 3D-Hexagonal Symmetry

Gregory P. Sorenson, Adam K. Schmitt, and Mahesh K. Mahanthappa*

Department of Chemistry, University of Wisconsin – Madison, 1101 University Avenue, Madison, WI 53706, U. S. A.

*Corresponding author: mahesh@chem.wisc.edu

Contents	Page
Figure S1. Thermoreversible order-order transitions exhibited by the 57.5 wt% Na-94 in H_2O LLC	S2
Table S1. Positions of observed reflections and residuals for H_1^{193} phase at 57.5 wt% Na-94 in H_2O	S3
Figure S2. SAXS pattern for H_1^{193} phase at 57.5 wt% Na-94 with Miller indices	S4
Figure S3. SAXS pattern for LLC exhibiting H_I^{193}/G_I phase coexistence at 55.0 wt% Na-74 in H_2O	S5
Figure S4. Isothermal frequency sweep measurement of G'(ω) and G''(ω) for the G _I -phase at 65.0 wt% Na-94 in H ₂ O at <i>T</i> = 25, 55 °C	S6
Figure S5. Isothermal frequency sweep measurement of G'(ω) and G''(ω) for the C _I -phase at 50.0 wt% Na-94 in H ₂ O at $T = 25$ °C	S6
Figure S6. Isothermal frequency sweep measurement of G'(ω) and G''(ω) for the H ₁ ¹⁹³ -phase at 57.5 wt% Na-94 in H ₂ O at <i>T</i> = 25, 55 °C	S7
Figure S7. JANA2006 Rietveld refinement of the SAXS pattern for the H_1^{193} -phase at 57.5 wt% Na-94 in H_2O	S 8
Table S2. Structure factor intensities and FWHM for extracted from the fit in Figure S7.	S9
Figure S8. JANA2006 Rietveld refinement of the SAXS pattern for the G_1 -phase at 62.5 wt% Na-94 in H_2O	S10
Figure S9. Electron density reconstruction based on the data fitting in Figure S8	S11
Figure S10. SUPERFLIP text file input for the electron density reconstruction of the H_1^{193} -phase at 57.5 wt% Na-94 in H ₂ O presented in Figure 5a.	S12

Fig. S1. Azimuthally-integrated synchrotron SAXS patterns for aqueous LLCs derived from 57.5 wt% **Na-94** in H₂O between T = 30-90 °C. A thermoreversible order-to-order transition is observed between 50-70 °C from the H₁¹⁹³ to G₁. The kinetics of this transition are slow, as evidenced by only partial phase reversion upon cooling to 30 °C and annealing for 5 min.

Table S1. Table of positions of the observed reflections $(q_{obs}(Å^{-1}) \text{ and } 2\theta_{obs}(\circ))$ from cell refinement of **Na-94** 57.5 wt% at 40 °C to $P6_3/mcm$ symmetry and lattice constants of a = b = 7.37 nm and c = 6.63 nm using the Jade 5 software package (Materials Data, Inc.), along with the angular residuals. For a three-dimensional hexagonal lattice, $q^2 = (4/3)(h^2 + k^2 + hk) + (1/R^2)l^2$, where R = c/a.(21)

				Residual =
hkl	$q_{\rm obs}({\rm \AA}^{-1})$	$2 heta_{ m obs}$ (°)	$2\theta_{\rm cal}(^\circ)$	$2\theta_{\rm calc}$ - $2\theta_{\rm obs}$ (°)
100	0.0989	0.927	0.927	0
110	0.1715	1.607	1.606	-0.001
002	0.1906	1.786	1.785	0
111	0.1963	1.839	1.837	-0.002
200	0.1977	1.853	1.854	0.001
102	0.2146	2.011	2.012	0.001
112	0.2564	2.403	2.401	-0.001
210	0.2619	2.454	2.453	-0.001
202	0.2749	2.576	2.574	-0.002
211	0.2786	2.611	2.611	0
300	0.2969	2.782	2.782	0
212			3.034	
113	0.3330	3.121	3.123	0.001
220	0.3430	3.214	3.212	-0.002
302	0.3527	3.305	3.306	0
221			3.334	
310	0.3564	3.34	3.343	0.004
311	0.3693	3.461	3.461	-0.001
004			3.571	
213			3.632	
222			3.675	
104			3.689	
400	0.3958	3.709	3.709	0
312			3.79	
114			3.916	
204	0.4293	4.023	4.024	0
320	0.4314	4.043	4.042	0
402			4.117	
321			4.14	
223			4.183	
410	0.4535	4.25	4.25	0
313			4.284	

Fig. S2. Azimuthally integrated X-ray scattering pattern for 57.5 wt% **Na-94** in H₂O at 40 °C with observed reflections (---), calculated reflection positions (-), and (*hkl*) indices for a unit cell with $P6_3/mcm$ symmetry and lattice constants of a = b = 7.37 nm and c = 6.63 nm. Fitting was performed using the cell refinement function in Jade 5 software package (Materials Data, Inc.).

Fig. S3. Azimuthally-integrated X-ray scattering pattern for the aqueous LLC derived from 55.0 wt% **Na-74** in H₂O. Diamonds (\blacklozenge) indicate the expected peak positions for the G_I phase that coexists with the H_I¹⁹³ phase.

Fig. S4. Dynamic elastic storage (G') and loss (G'') modulus as a function of shear frequency for the G_1 -phase comprising 65.0 wt% Na-94 in H₂O at 25 and 55 °C.

Fig. S5. Dynamic elastic storage (G') and loss (G'') modulus as a function of shear frequency for the C₁-phase comprising 50.0 wt% **Na-94** in H₂O at 25 °C. Attempts to obtain rheological data for this sample at 55 °C failed due to sample dehydration at elevated temperatures.

Fig. S6. Dynamic elastic storage (G') and loss (G") modulus as a function of shear frequency for the H_1^{193} -phase comprising 57.5 wt% **Na-94** in H_2O at 25 and 55 °C.

Fig. S7. Azimuthally-integrated X-ray scattering pattern for 57.5 wt% Na-94 in H₂O at 40 °C overlaid with a simulated pattern from Rietveld refinement in *JANA2006*. Calculated peak positions and the fit residuals are displayed below the diffractogram. This fit assumes the $P6_3/mcm$ symmetry using lattice parameters a = b = 7.34 nm, c = 6.60 nm.

Table S2. List of structure factor intensities and peak full width at half maximum associated with each allowed reflection (hkl), derived from the fit shown in Fig. S7, as extracted by JANA2006.

(hkl)	Intensity	FWHM
100	4.4644	0.0074
110	1133.2637	0.0134
002	4084.4890	0.0156
111	3033.6406	0.0163
200	10000.0010	0.0165
102	1580.7277	0.0186
112	85.2785	0.0240
210	637.9702	0.0247
202	16.0249	0.0264
211	42.4498	0.0270
300	206.6376	0.0295
113	0.9880	0.0344
220	43.7681	0.0358
302	13.2740	0.0372
221	8.7943	0.0376
310	14.7810	0.0377
311	6.3111	0.0395
004	38.7469	0.0411
213	14.6813	0.0420
4 -2 2	17.3565	0.0427
104	18.1022	0.0429
400	47.1941	0.0432
312	0.1971	0.0444
114	52.9179	0.0463

Fig. S8. Azimuthally-integrated X-ray scattering pattern for 62.5 wt% Na-94 in H₂O at 40 °C overlaid with a simulated pattern from Rietveld refinement in *JANA2006*. Calculated peak positions and fit residual are displayed below the diffractogram. The fit was performed using *JANA2006* assuming *Ia*³*d* symmetry and resulting lattice parameters are a = b = c = 7.53 nm.

Fig. S9. Electron density reconstruction for G_I-phase comprising 62.5 wt% **Na-94** in H₂O at 40 °C using the Superflip charge flipping algorithm, derived from the fit shown in Fig. S8 with the lattice parameters a = b = c = 7.53 nm. This reconstruction serves to validate our use of the *SUPERFLIP* charge flipping algorithm for the reconstruction of the electron density maps for LLCs derived from gemini surfactants.

Figure S10. *SUPERFLIP* Text File Input for the generation of the electron density contrast map for the H_1^{193} phase shown in Fig. 3A is given below this line. *SUPERFLIP* implements a computer algorithm described in references 19 and 26 of the main article to generate an electron density reconstruction from the SAXS data by: (1) randomly assigning the initial phases associated with each observed reflection and generating a structure, (2) transforming the resulting structure into reciprocal space for comparison with the experimentally observed X-ray data, and (3) iteratively permuting the phases and comparing the results to the observed X-ray data, until a user defined convergence criterion is attained. The figure of merit associated with this electron density reconstruction was fm = 15, which is considered an excellent fit.

title CleanHexNet perform CF outputfile "CleanHexNet.m81" "CleanHexNet.m80" outputformat jana dimension 3 73.3790 73.3790 66.0277 90.00 90.00 120.00 cell spacegroup P63/mcm centro yes centers 0.000000 0.000000 0.000000 endcenters symmetry x3 x1 x2 -x2 x1-x2 x3 -x1+x2-x1 x3 -x1 -x2 x3+1/2 $x^2 - x^1 + x^2 - x^3 + 1/2$ x1-x2 x1 x3+1/2 x2 x1 - x3 + 1/2x1-x2 -x2 - x3 + 1/2-x1 - x1 + x2 - x3 + 1/2-x2 -x3 -x1 -x1+x2x2 -x3 x1-x2 -x3 x1 -x2 -x3 -x1 $x^{2} - x^{1} + x^{2}$ -x3 x1-x2 x1 -x3 x1 $x^2 - x^3 + 1/2$ -x2 x1-x2-x3+1/2-x1+x2-x1 - x3 + 1/2-x2 -x1 x3+1/2-x1+x2x2 x3+1/2 $x_{1}-x_{2} x_{3}+1/2$ x1 x2 x1 x3

x1-x2 -x2 x3 -x1 -x1+x2 x3

endsymmetry composition C14000 O2000

Keywords for charge flipping repeatmode nosuccess bestdensities 1 symmetry polish yes voxel auto maxcycles 200000 delta AUTO weakratio 0.000 Biso 0.000 randomseed AUTO searchsymmetry average derivesymmetry no # End of keywords for charge flipping

EDMA-specific keywords inputfile CleanHexNet.m81 outputbase CleanHexNet m40forjana yes writem40 CleanHexNet_tmp.m40 maxima all fullcell no scale fractional plimit 0.3000 sigma numberofatoms composition centerofcharge yes chlimit 0.2500 chlimlist 0.1884 relative # End of EDMA-specific keywords

electrons 0.0000					
dataitemwidths 4 15 15					
dataformat intensity fwhm					
fbegin					
1	Õ	0	4.4644	0.0074	
2	-1	0	1133.2637	0.0134	
0	0	2	4084.4890	0.0156	
2	-1	1	3033.6406	0.0163	
2	0	0	10000.0010	0.0165	
1	0	2	1580.7277	0.0186	
2	-1	2	85.2785	0.0240	

3 -1	0	637.9702	0.0247
2 0	2	16.0249	0.0264
3 -1	1	42.4498	0.0270
3 0	0	206.6376	0.0295
2 -1	3	0.9080	0.0344
4 -2	0	43.7681	0.0358
3 0	2	13.2740	0.0372
4 -2	1	8.7943	0.0376
4 -1	0	14.7810	0.0377
4 -1	1	6.3111	0.0395
0 0	4	38.7469	0.0411
3 -1	3	14.6813	0.0420
4 -2	2	17.3565	0.0427
1 0	4	18.1022	0.0429
4 0	0	47.1941	0.0432
4 -1	2	0.1971	0.0444
2 -1	4	52.9179	0.0463
endf			