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Supporting Information 

Calculating KD for Harmonic Well Potentials 

 The procedure for determining KD was developed based on the work by Luo and Sharp.1 
For the case of a simple harmonic well potential, UH, has the form,  
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H
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where q are the translational and rotational coordinates of reactant A, B, and their complex AB, 
and F is the force constant matrix defined as, 
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where ij is the coordinate fluctuation covariance matrix, ks is the spring constant, and J3 is a 3x3 
unit matrix (a matrix of ones). The association constant, KA, can be computed for a harmonic well 
potential as, 
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where H(r) =1 in the bound state and 0 otherwise. The integral is solved analytically as,  
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where |ij|=(kT/ks)3 is the determinant of ij and n is the degrees of freedom in the system. With 
biomolecules allowed to diffuse in 3 dimensions and non-orientation dependent binding, 
substituting Eq. (S4) into Eq. (S3) yields, 
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allowing for direct computation of KD as a function of ks and UM.
 

Calculating KD for Harmonic Well + Hard Sphere Potentials 

As described in the Theory section, the second virial coefficient, B2, is calculated for 
ligands with hard core + harmonic well (HCHW) potentials (i.e., aL>0) to estimate their effective 
interaction strength. The second virial coefficient for ligands with hard cores, B2,HCHW, is calculated 
with Eq. (4) as, 
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An equivalent harmonic well potential is then found by determining a simple harmonic well (HW) 
potential (i.e., aL=0) with the same B2 as the ligand including a hard core. The second virial 
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coefficient of a HW potential (without a hard core), B2,HW, is calculated with Eq. (4) as, 
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To find an equivalent HW potential, UM in URL (Eq. 1) is adjusted at constant ks until B2,HW is equal 
to B2,HCHW. These two potentials are then considered equivalent and the KD of the harmonic well 
calculated from Eq. (3) assigned to the ligand including a hard core.  

3D Rotational Receptor Moves 

In order to maintain uniform spacing between the receptors and the surface while making 
3D receptor rotational moves, the rotations made must be uniform in Euclidean space. The 
following algorithm was developed by Arvo to make random, uniform rotational moves2: 

1. Rotate randomly about the z axis by applying the rotation matrix, R:  
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where 1 is a random variable that ranges from 0 to the maximum rotational step size, srot. 

2. Rotate randomly from the position (0, 0, a + hR) to a random position by using the 
Householder matrix, H:  

 H  I  2vvT  (S9) 

where v is the matrix, 
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3. The final rotation can be defined with matrix, M as: 

 M  HR  (S11) 

The random variables 2 and 3 also range from 0 to sR. A maximum value of 1 x 10-3 for sR was 
found empirically to not disturb the equilibrium ligand coverage and allowed for unbiased 
configurational sampling as shown in Figure S1.  

Colloid-Ligand Cluster Moves 

In order to allow our colloids to freely diffuse with dense coverages of ligands on their 
surface, cluster moves were used to translate all interacting colloids and ligands when attempting 
colloidal MC moves. The following algorithm was used to decide whether to accept or reject the 
cluster moves: 

1.  Determine number of ligands, nL, bound to a receptor on the colloid (r < aL + ) 



Duncan & Bevan  Page 3 of 6 
	

2. Move nL ligands on colloid with same translation and rotation as attempted by the colloid 
and receptors in that step. 

3. Calculate total change in energy due to the cluster move, E, for colloid and the nL ligands 
bound. 
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 where EC is the change in energy of the colloid and EL is the change an energy of a 
ligand. 

4. If E is less than or equal to zero or e(-E) is greater than a random integer, the cluster 
move is accepted. 

By applying the metropolis criterion to these cluster moves, the potential for biasing in these moves 
was avoided. Figure S2 shows on a single diffusing colloid with coverages up to ~99%, MC move 
efficiency of the colloid (open triangles down) and ligands was still maintained with a minimum 
of ~78% acceptance rates (open circles). 

Calculating Number, Energy, and Orientation of Ligand Bridges  

The interaction of ligands with receptors is strictly limited to one receptor on each particle. 
If a ligand comes within range of a receptor (r < aL + ), the net interaction is zero if it is currently 
occupying a receptor on the same particle. All ligands interacting with two receptors (one on each 
particle) are identified as a bridge. The number of bridges, NB, was tracked in each step as a 
function of L in all MC-US simulations. The average number of bridges as a function of L, NB(L), 
can be calculated as, 
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where n(L) is the total number of bridging events at separation L. The energy of each ligand bridge 
is calculated as, 
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which is simply the sum of the interactions with the receptors that make up the bridge, receptor i 
and receptor j, that can be calculated with Eq. (3). Since colloids only make translational moves in 
the x-direction, we can determine the bridge orientation with respect to the colloidal surfaces as 
the orientation of the bridge in the x-direction. The orientation of each bridge is calculated with 
respect to the colloids in the x-direction by first determining the root mean-square distance between 
the receptors i and j, rij, calculated as, 
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and the root mean-square distance between receptors i and j in the x-direction, rij,x, calculated as, 
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We can then calculate the bridge orientation, , between receptors i and j with respect to the 
colloidal surfaces as, 
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Histograms of UB and  were then populated as a function of L from each of the 12 bins of the 
MC-US simulation results. 

Supplementary Figure Captions 

Figure S1. Schematic of receptor position (green circle) in spherical coordinates where  and  
are the polar and azimuthal angles of each receptor with respect to the center of the colloid (blue 
circle). Histograms of sampled (A)  and (B)  in 2000 representative configurations for MC 
colloidal surface adsorption simulation at [C] = 10 µM, aL = 5nm, and UM = 11kT (0.99). 

Figure S2. MC move efficiency (open circles) and fraction coverage, , (open triangles down) for 
MC colloidal surface adsorption simulation at [C] = 10 µM, aL = 5nm, and UM = 11kT. 
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Figure S1 
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Figure S2 

 

	

	
	


