Supporting Information for:

Ultralong cylindrical micelles precisely located with semiconductor nanorods by solvent evaporation-driven self-assembly

Xiaobo Nie^{*a,b*}, Jie Cui^{*a*} and Wei Jiang^{**a*}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding author. E-mail: wjiang@ciac.ac.cn

SUPPORTING DATA

Fig. S1 (a) and (b) Bright-field TEM images showing the numbers of the PS-NRs randomly oriented in the central portions of the hybrid cylinders in the corresponding cross-sections. The red dash lines meant the cross-sections of the hybrid cylinders and the numbers nearby were the amounts of the PS-NRs in the corresponding cross-sections.

Fig. S2 (a-k) Bright-field TEM images of coassemblies formed from PS-NRs (f = 0.1) and PS₃₅₆-b-PEO₁₄₈ in CHCl₃-in-H₂O emulsions (V_{CHCl_3} : $V_{H_2O} = 1:5$) at magnetic stirring rate of 750 rpm, but varied [CTAB] as depicted in the top right corner of the corresponding image: (a) 50 mg/mL; (b) 30 mg/mL; (c) 20 mg/mL; (d) 10 mg/mL; (e) 8 mg/mL; (f) 5 mg/mL; (g) 2.5 mg/mL; (h) 2 mg/mL; (i) 1 mg/mL; (j) 0.3 mg/mL; (k) 0.2 mg/mL. All scale bars in the TEM images are 100 nm.

Fig. S3 Distributions of the statistic diameters of the coassemblies formed from PS-NRs (f = 0.1) and PS₃₅₆-*b*-PEO₁₄₈ in CHCl₃-in-H₂O emulsions (V_{CHCl_3} : $V_{H_2O} = 1:5$) at magnetic stirring rate of 750 rpm, but varied [CTAB]: (a) [CTAB] = 20 mg/mL, $D = 69.8 \pm 7.2$ nm; (b) [CTAB] = 10 mg/mL, $D = 72.5 \pm 7.0$ nm; (c) [CTAB] = 8 mg/mL, $D = 71.1 \pm 9.8$ nm; (d) [CTAB] = 5 mg/mL, $D = 74.3 \pm 6.8$ nm; (e) [CTAB] = 2 mg/mL, $D = 56.1 \pm 5.8$ nm; (f) [CTAB] = 1 mg/mL, $D = 60.8 \pm 5.5$ nm; (g) [CTAB] = 0.3 mg/mL, $D = 63.1 \pm 6.2$ nm; (h) [CTAB] = 0.2 mg/mL, $D = 83.9 \pm 5.4$ nm.

Fig. S4 (a-h) Bright-field TEM images of cylindrical micelles with PS-NRs loaded in their central cores formed from PS-NRs (f = 0.1) and PS₃₅₆-b-PEO₁₄₈ in CHCl₃-in-H₂O emulsions at different V_{CHCl_3} : V_{H_2O} when [CTAB] = 1 mg/mL and magnetic stirring rate was 750 rpm. (a-d) $V_{CHCl_3} = 0.2$ mL, but varied V_{H_2O} ; (e-h) $V_{H_2O} = 1$ mL, but varied V_{CHCl_3} . The V_{CHCl_3} : V_{H_2O} was set to be (a, e) 1:3, (b, f) 1:5, (c, g) 1:10 and (d, h) 1:20, respectively. All scale bars in the TEM images are 100 nm.

Fig. S5 (a-h) Distributions of the statistic diameters of the hybrid cylinders formed from PS-NRs (f = 0.1) and PS₃₅₆-b-PEO₁₄₈ in CHCl₃-in-H₂O emulsions at different V_{CHCl_3} : $V_{H_{2O}}$ when [CTAB] = 1 mg/mL and magnetic stirring rate was 750 rpm. (a-d) $V_{CHCl_3} = 0.2$ mL, but varied $V_{H_{2O}}$; (e-h) $V_{H_{2O}} = 1$ mL, but varied V_{CHCl_3} . The V_{CHCl_3} : $V_{H_{2O}}$ was set to be (a, e) 1:3, (b, f) 1:5, (c, g) 1:10 and (d, h) 1:20, respectively.

Fig. S6 (a-d) Bright-field TEM images of cylindrical micelles with PS-NRs loaded in their central cores formed from PS-NRs (f = 0.1) and PS₃₅₆-b-PEO₁₄₈ in CHCl₃-in-H₂O emulsions ($V_{CHCl_3}:V_{H_2O} = 1:5$) in the presence of CTAB ([CTAB] = 1 mg/mL) under different magnetic stirring rate: (a) 500 rpm; (b) 750 rpm; (c) 1000 rpm; (d) 1500 rpm. All scale bars in the TEM images are 100 nm.

Fig. S7 (a-d) Distributions of the statistic diameters of the hybrid cylinders formed from PS-NRs (f = 0.1) and PS₃₅₆-b-PEO₁₄₈ in CHCl₃-in-H₂O emulsions (V_{CHCl_3} : $V_{H_2O} = 1:5$) in the presence of CTAB ([CTAB] = 1 mg/mL) under different magnetic stirring rate: (a) 500 rpm; (b) 750 rpm; (c) 1000 rpm; (d) 1500 rpm.