Supporting Information

Surface Properties of Nucleolipids and Photo-Controlled Release of Hydrophobic Guest Molecules from Their Micellar Aggregates

Yawei Sun,^a Haiyan Yu,^a Yongfeng Yan,^a Cuixia Chen,^a Wenwen Xu,^a Jian R. Lu^{*b} and Hai

 Xu^{*a}

^a Centre for Bioengineering and Biotechnology, China University of Petroleum (East

China), 66 Changjiang West Road, Qingdao 266580, China

^b Biological Physics Group, School of Physics and Astronomy, University of

Manchester, Schuster Building, Manchester M13 9PL, United Kingdom

Fig. S1 UV-visible spectra of A) P-dT- C_{14} , B) P-dT- C_{12} and C) P-dT- C_{10} in 0.2 M sodium phosphate solution (pH of 8.0) under UV irradiation (350-380 nm, 50 mW/cm²)

2. Figure S2

Fig. S2 A) DLS profiles of 10 mM dT- C_n and P-dT- C_n in 0.2 M sodium phosphate solution (pH of 8.0); B) DLS profiles before and after NR loading for 10 mM dT- C_{16} and P-dT- C_{16} in 0.2 M sodium phosphate solution (pH of 8.0)

3. Figure S3

Fig. S3 Fluorescence emission spectra (λ_{exc} = 550 nm) of the NR loaded aqueous solutions of A) P-dT-C₁₄, B) P-dT-C₁₂ and C) P-dT-C₁₀ (10 mM) under UV irradiation (350-380 nm, 50 mW/cm²).

Fig. S4 NR Release profiles of the NR loaded A) P-dT-C₁₄, B) P-dT-C₁₂ and C) P-dT-C₁₀ solutions under UV irradiation at light intensities of 20, 50, and 100 mW/cm² and in the dark; D) Release profiles of NR in the P-dT-C_n solutions under UV irradiation of 20 mW/cm²; E) Release profiles of NR in the dT-C_n solutions under UV irradiation of 50 mW/cm².

5. Figure S5

Fig. S5 The NR loaded dT- C_{16} solution (10 mM) before (left) and after (right) UV irradiation.

6. The calculation of NR Encapsulation efficiency

The NR encapsulation efficiency was calculated as following (as given in ESI in the revision) $Encapsulation \ efficency = \frac{total \ usage \ of \ NR \ (mg) - insolubel \ NR(mg)}{total \ usage \ of \ NR \ (mg)} \times 100\%$

7. NMR and MS data

Compound 1a

Yield 77%, white solid. ¹H NMR (CD₃OD, 400 MHz): $\delta = 0.78-0.81$ (m, *CH*₃, 3H), 1.20-1.32 (m, *CH*₂, 14H), 1.62-1.65 (m, *CH*₂, 2H), 1.62-1.65 (m, *CH*₂, 2H), 1.78 (s, *CH*₃, 3H), 2.43-2.44 (m, *CH*₂O, 2H), 2.80-2.83 (m, *CH*₂CN, 2H), 3.81 (m, *CH*₂O, 2H), 4.05-4.07 (t, *J* = 6.5 Hz, *CH*₂OAr, 2H), 4.18-4.20 (m, *CH*O, 1H), 4.98-5.01 (s, *CH*O, 2H), 6.20-6.23 (m, Ar*H*, 1H), 7.70 (m, *NH*, 1H). ESI MS calcd for $C_{23}H_{39}N_3O_8P$,516.54 (M+H⁺), found 516.25; $C_{23}H_{42}N_4O_8P$,533.58 (M+NH₄⁺), found 533.27; $C_{23}H_{38}N_3NaO_8P$,538.53(M+Na⁺), found 538.23.

Compound 2a

Yield 71%, white solid.¹H NMR (CD₃OD, 400 MHz): $\delta = 0.89-0.92$ (m, *CH*₃, 3H), 1.31-1.35 (m, *CH*₂, 18H), 1.42-1.44 (m, *CH*₂, 2H), 1.79-1.86 (m, *CH*₂, 2H), 1.90 (s, *CH*₃, 3H), 2.43-2.55 (m, *CH*₂O, 2H), 2.93-2.95 (m, *CH*₂CN, 2H), 3.29 (b, *OH*, 1H), 3.83 (m, *CH*₂O, 2H), 4.17-4.19 (t, *J* = 6.5 Hz, *CH*₂OAr, 2H), 4.23-4.24 (m, *CH*O, 1H), 4.29-4.31 (m, *CH*₂O, 2H), 5.12 (s, *CH*O, 1H), 6.33-6.35 (m, Ar*H*, 1H), 7.82 (m, *NH*, 1H). ESI MS calcd for C₂₅H₄₃N₃O₈P,544.59 (M+H⁺), found 544.27; C₂₅H₄₂N₃NaO₈P 566.58(M+Na⁺), found 566.26.

Compound 3a

Yield 82%, white solid.¹H NMR (CD₃OD, 400 MHz): $\delta = 0.78-0.81$ (m, CH₃, 3H), 1.18-1.22 (m, CH₂, 22H), 1.61-1.63 (m, CH₂, 2H), 1.78 (s, CH₃, 3H), 2.32-2.47 (m, CH₂O, 2H), 2.79-2.83 (m, CH₂CN, 2H), 3.29 (b, OH, 1H), 3.70-3.71 (m, CH₂O, 2H), 4.05-4.07 (m, CH₂O, 2H), 4.11-4.12 (m, CHO, 1H), 4.13-4.21 (m, CH₂O, 2H), 4.98-5.01 (m, CHO, 1H), 6.19-6.23 (m, ArH, 1H), 7.70 (m, NH, 1H). ESI MS calcd for C₂₇H₄₇N₃O₈P,572.65 (M+H⁺), found 572.31; C₂₇H₅₀N₄O₈P,589.68 (M+NH₄⁺), found 589.33; C₂₇H₄₆N₃NaO₈P,594.29 (M+Na⁺), found 594.63.

Compound 4a

Yield 68%, white solid.¹H NMR (CD₃OD, 400 MHz): $\delta = 0.78-0.82$ (m, CH₃, 3H), 1.18-1.22 (m, CH₂, 26H), 1.61-1.63 (m, CH₂, 2H), 1.78 (s, CH₃, 3H), 2.34-2.49 (m, CH₂O, 2H), 2.79-2.83 (m, CH₂CN, 2H), 3.29 (b, OH, 1H), 3.79-3.81 (m, CH₂O, 2H), 4.05-4.07 (m, CH₂O, 2H), 4.18-4.19 (m, CHO, 1H), 4.21-4.23 (m, CH₂O, 2H), 4.985.01 (m, CHO, 1H), 6.19-6.23 (m, ArH, 1H), 7.70 (m, NH, 1H). ESI MS calcd for C₂₉H₅₁N₃O₈P,600.70 (M+H⁺), found 600.34; C₂₉H₅₄N₄O₈P,617.73 (M+NH₄⁺), found 617.37; C₂₉H₅₀N₃NaO₈P,622.69 (M+Na⁺), found 622.32.

Compound 5a

Yield 92%, yellow solid.¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.28-1.39 (m, CH_2 , 12H), 1.43-1.48 (m, CH_2 , 2H), 1.80-1.86 (m, CH_2 , 2H), 4.09-4.11 (t, J = 6.5 Hz, CH_2OAr , 2H), 7.12-7.15 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.30-7.31 (d, J = 3 Hz, ArH, 1H), 8.14-8.16 (d, J = 9 Hz, ArH, 1H), 10.49 (s, ArCHO, 1H); ESI MS calcd for $C_{17}H_{26}NO_4$ 308.38 (M+H⁺), found 308.19; $C_{17}H_{25}NO_4Na$ 330.37 (M+Na⁺), found 330.17; $C_{17}H_{25}NO_4K$ 346.48 (M+K⁺), found 346.15.

Compound 6a

Yield 90%, yellow solid.¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.27-1.37 (m, CH_2 , 16H), 1.43-1.48 (m, CH_2 , 2H), 1.80-1.86 (m, CH_2 , 2H), 4.09-4.11 (t, J = 6.5 Hz, CH_2OAr , 2H), 7.12-7.14 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.30-7.31 (d, J = 3 Hz, ArH, 1H),8.14-8.16 (d, J = 9 Hz, ArH, 1H), 10.49 (s, ArCHO, 1H); ESI MS calcd for C₁₉H₃₀NO₄, 336.44 (M+H⁺), found 336.22; C₁₉H₂₉NO₄Na, 358.43 (M+Na⁺), found 358.20.

Compound 7a

Yield 87%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.26-1.37 (m, CH_2 , 20H), 1.45-1.48 (m, CH_2 , 2H), 1.80-1.85 (m, CH_2 , 2H), 4.09-4.11 (t, J = 6.5 Hz, CH_2 OAr, 2H), 7.12-7.15 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.30-7.31 (d, J = 3 Hz, ArH, 1H),8.14-8.16 (d, J = 9.5 Hz, ArH, 1H), 10.48 (s, ArCHO, 1H); ESI MS calcd for C₂₁H₃₄NO₄, 364.49 (M+H⁺), found 364.25; C₂₁H₃₃NO₄Na, 386.48 (M+Na⁺), found 386.23.

Compound 8a

Yield 80%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.26-1.37 (m, CH_2 , 24H), 1.44-1.48 (m, CH_2 , 2H), 1.80-1.86 (m, CH_2 , 2H), 4.09-4.11 (t, J = 6.5 Hz, CH_2OAr , 2H), 7.12-7.15 (dd, $J_I = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.30-7.31 (d, J = 3 Hz, ArH, 1H),8.14-8.16 (d, J = 9.5 Hz, ArH, 1H), 10.48 (s, ArCHO, 1H); ESI MS calcd for $C_{23}H_{38}NO_4$, 392.54 (M+H⁺), found 392.28, $C_{23}H_{37}NO_4Na$,

414.53 (M+Na⁺), found 414.26.

Compound 1b

Yield 66%, white solid.¹H NMR (CD₃OD, 400 MHz): $\delta = 0.79$ -0.81 (m, CH₃, 3H), 1.19-1.27 (m, CH₂+CH₃, 23H), 1.51-1.53 (m, CH₂, 2H), 1.78 (s, CH₃, 3H), 2.17-2.35 (m, CH₂O, 2H), 3.36-3.38 (m, 6H, CH₂N), 3.68-3.70 (m, CH₂O, 2H), 3.75-3.77 (m, CH₂O, 2H), 4.04-4.05 (m, CHO, 1H), 4.71-4.74 (m, CHO, 1H), 6.19-6.22 (m, CHO, 1H), 7.76-7.77 (m, ArH, 1H). ESI MS calcd for C₂₀H₃₄N₂O₈P,461.47 (M-Et₃NH⁺), found 461.20.

Compound 2b

Yield 60%, white solid. ¹H NMR (CD₃OD, 500 MHz): $\delta = 0.79-0.81$ (m, *CH*₃, 3H), 1.18-1.23 (m, *CH*₂+*CH*₃, 27H), 1.51-1.54 (m, *CH*₂, 2H), 1.88 (s, *CH*₃, 3H), 2.17-2.37 (m, *CH*₂O, 2H), 3.29 (b, *OH*, 1H), 3.09-3.12 (m, 6H, *CH*₂N), 3.67-3.69 (m, *CH*O, 1H), 3.71-3.78 (m, *CH*₂O, 2H), 4.04-4.05 (m, *CH*O, 1H), 4.71-4.73 (m, *CH*O, 1H), 6.18-6.22 (m, *CH*O, 1H),7.76-7.77 (m, Ar*H*, 1H). ESI MS calcd for C₂₂H₃₈N₂O₈P,489.52 (M-Et₃NH⁺), found 489.24.

Compound 3b

Yield 58%, white solid. ¹H NMR (CD₃OD, 500 MHz): $\delta = 0.79-0.81$ (m, *CH*₃, 3H), 1.18-1.27 (m, *CH*₂+*CH*₃, 31H), 1.51-1.53 (m, *CH*₂, 2H), 1.87 (s, *CH*₃, 3H), 2.17-2.37 (m, *CH*₂O, 2H), 3.20-3.22 (m, 6H, *CH*₂N), 3.35-3.40 (m, *CH*O, 1H), 3.69-3.70 (m, *CH*O, 1H), 3.76-3.77 (m, *CH*₂O, 2H),4.04-4.05 (m, *CH*O, 1H), 4.71-4.73 (m, *CH*O, 1H), 6.20-6.21 (m, *CH*O, 1H), 7.76-7.77 (m, Ar*H*, 1H). ESI MS calcd for $C_{24}H_{42}N_2O_8P$,517.27 (M-Et₃NH⁺), found 512.57.

Compound 4b

Yield 55%, white solid. ¹H NMR (CD₃OD, 500 MHz): $\delta = 0.79-0.81$ (m, *CH*₃, 3H), 1.18-1.23 (m, *CH*₂+*CH*₃, 35H), 1.52-1.55 (m, *CH*₂, 2H), 1.78 (s, *CH*₃, 3H), 2.17-2.36 (m, *CH*₂O, 2H), 3.07-3.13 (m, 6H, *CH*₂N), 3.69-3.70 (m, *CH*O, 1H), 3.76-3.78 (m, *CH*₂O, 2H), 4.04-4.05 (m, *CH*O, 1H), 4.71-4.73 (m, *CH*O, 1H), 6.19-6.22 (m, *CH*O, 1H), 7.76-7.77 (m, Ar*H*, 1H). ESI MS calcd for C₂₆H₄₆N₂O₈P,545.63 (M-Et₃NH⁺), found 542.29.

Compound 5b

Yield 95%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.28-1.32 (m, CH_2 , 12H), 1.43-1.49 (m, CH_2 , 2H), 1.79-1.84 (m, CH_2 , 2H), 2.74 (b, OH, 1H), 4.05-4.08 (t, J = 6.5 Hz, CH_2OAr , 2H), 4.98 (s, $ArCH_2OH$, 2H), 6.86-6.88 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.19-7.20 (d, J = 3 Hz, ArH, 1H), 8.15-8.17 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for $C_{17}H_{28}NO_4$, 310.40 (M+H⁺), found 310.20; $C_{17}H_{27}NO_4Na$, 332.39 (M+Na⁺), found 332.19; $C_{17}H_{27}NO_4K$, 348.50 (M+K⁺), found 348.16;

Compound 6b

Yield 93%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.27-1.32 (m, CH_2 , 16H), 1.43-1.48 (m, CH_2 , 2H), 1.79-1.84 (m, CH_2 , 2H), 2.74 (b, OH, 1H), 4.05-4.08 (t, J = 6.5 Hz, CH_2OAr , 2H), 4.98 (s, $ArCH_2OH$, 2H), 6.86-6.88 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.19-7.20 (d, J = 3 Hz, ArH, 1H), 8.15-8.17 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for $C_{19}H_{30}NO_4$, 338.45 (M+H⁺), found 338.2; $C_{19}H_{29}NO_4Na$ 360.44 (M+Na⁺), found 360.21.

Compound 7b

Yield 94%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.26-1.31 (m, CH_2 , 20H), 1.43-1.48 (m, CH_2 , 2H), 1.79-1.84 (m, CH_2 , 2H), 2.74 (b, OH, 1H), 4.05-4.08 (t, J = 6.5 Hz, CH_2OAr , 2H), 4.98 (s, $ArCH_2OH$, 2H), 6.86-6.88 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.19-7.20 (d, J = 3 Hz, ArH, 1H), 8.15-8.17 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for C₂₁H₃₄NO₄, 366.51 (M+H⁺), found 366.26; C₂₁H₃₃NO₄Na, 388.50 (M+Na⁺), found 388.24.

Compound 8b

Yield 83%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.87-0.89$ (t, J = 7 Hz, CH_3 , 3H), 1.26-1.31 (m, CH_2 , 24H), 1.43-1.48 (m, CH_2 , 2H), 1.79-1.84 (m, CH_2 , 2H), 2.74 (b, OH, 1H), 4.05-4.08 (t, J = 6.5 Hz, CH_2OAr , 2H), 4.98 (s, $ArCH_2OH$, 2H), 6.86-6.88 (dd, $J_1 = 3$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.19-7.20 (d, J = 3 Hz, ArH, 1H), 8.16-8.18 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for C₂₃H₃₈NO₄, 394.56 (M+H⁺), found 394.26; C₂₃H₃₇NO₄Na, 416.55 (M+Na⁺), found 416.28.

Compound 5c

Yield 70%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m, CH₃, 3H),

1.27-1.35 (m, CH₂, 12H), 1.44-1.46 (m, CH₂, 2H), 1.80-1.85 (m, CH₂, 2H), 1.88 (s, CH₃, 3H), 2.46-2.52 (m, CH₂O, 2H), 2.85-2.86 (m, CH₂CN, 2H), 3.29 (b, OH, 1H), 3.89-3.91 (m, CH₂O, 2H), 4.07-4.09 (t, J = 6 Hz, CH₂OAr, 2H), 4.24-4.27 (m, CH₂O, 2H), 4.35-4.40 (m, CH₂O, 2H), 5.26 (s, CHO, 1H), 5.55-5.56 (d, J = 6.5 Hz, ArCH₂O, 2H), 6.23-6.24 (d, J = 4 Hz, CHO, 1H), 6.92-6.94 (d, $J_1 = 2.5$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.17-7.18 (d, J = 2.5 Hz, ArH, 1H), 7.55-7.57 (d, J = 9 Hz, ArH, 1H),8.18-8.20 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for C₃₀H₄₄N₄O₁₁P,667.66 (M+H⁺), found 667.27; C₃₀H₄₇N₅O₁₁P, 68.69 (M+NH₄⁺), found 684.29; C₃₀H₄₃NaN₄O₁₁P,689.65 (M+Na⁺), found 689.25; C₃₀H₄₃KN₄O₁₁P,705.75 (M+K⁺), found 705.23.

Compound 6c

Yield 72%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.85-0.89$ (m, *CH*₃, 3H), 1.27-1.35 (m, *CH*₂, 14H), 1.44-1.47 (m, *CH*₂, 2H), 1.79-1.86 (m, *CH*₂, 2H), 1.88 (s, *CH*₃, 3H), 2.47-2.52 (m, *CH*₂O, 2H), 2.85-2.86 (m, *CH*₂CN, 2H), 3.29 (b, *OH*, 1H), 3.89-3.91 (m, *CH*₂O, 2H), 4.07-4.09 (t, *J* = 6.5 Hz, *CH*₂OAr, 2H), 4.24-4.26 (m, *CH*₂O, 2H), 4.35-4.40 (m, *CH*₂O, 2H), 5.26 (s, *CH*O, 1H), 5.54-5.56 (d, *J* = 6.5 Hz, *ArCH*₂O, 2H), 6.21-6.22 (d, *J* = 4 Hz, *CH*O, 1H), 6.90-6.93(d, *J*₁ = 2.5 Hz, *J*₂= 9 Hz, Ar*H*, 1H), 7.17-7.18 (d, *J*= 2.5 Hz, Ar*H*, 1H), 7.55-7.58 (d, *J* = 9 Hz, Ar*H*, 1H), 8.18-8.20 (d, *J* = 9 Hz, Ar*H*, 1H); ESI MS calcd for C₃₂H₄₈N₄O₁₁P,695.71 (M+H⁺), found 695.30; C₃₂H₅₁N₅O₁₁P, 712.75 (M+NH₄⁺), found 712.33.

Compound 7c

Yield 62%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m, *CH*₃, 3H), 1.26-1.35 (m, *CH*₂, 18H), 1.43-1.47 (m, *CH*₂, 2H), 1.79-1.84 (m, *CH*₂, 2H), 1.88 (s, *CH*₃, 3H), 2.49-2.58 (m, *CH*₂O, 2H), 2.84-2.87 (m, *CH*₂CN, 2H), 3.29 (b, *OH*, 1H), 3.88-3.90 (m, *CH*₂O, 2H), 4.06-4.09 (t, *J* = 6.5 Hz, *CH*₂OAr, 2H), 4.24-4.27 (m, *CH*₂O, 2H), 4.35-4.40 (m, *CH*₂O, 2H), 5.26 (s, *CHO*, 1H), 5.54-5.56 (d, *J* = 6.5 Hz, Ar*CH*₂O, 2H), 6.21-6.26 (m, *CHO*, 1H), 6.91-6.93 (d, *J*₁ = 2.5 Hz, *J*₂= 9 Hz, Ar*H*, 1H), 7.18-7.19 (d, *J*= 2.5 Hz, Ar*H*, 1H), 7.55-7.58 (d, *J* = 9 Hz, Ar*H*, 1H),8.17-8.20 (d, *J* = 9 Hz, Ar*H*, 1H); ESI MS calcd for C₃₄H₅₂N₄O₁₁P,723.77(M+H⁺), found 723.34, C₃₄H₅₅N₅O₁₁P, 740.82 (M+NH₄⁺), found 740.36.

Compound 8c

Yield 66%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m, CH₃, 3H), 1.26-1.35 (m, CH₂, 22H), 1.43-1.47 (m, CH₂, 2H), 1.80-1.83 (m, CH₂, 2H), 1.87 (s, CH₃, 3H), 2.49-2.58 (m, 2H, CH₂O), 2.85-2.86 (m, CH₂CN, 2H), 3.29 (b, OH, 1H), 3.88 (m, CH₂O, 2H), 4.06-4.09 (t, J = 6.5 Hz, CH₂OAr, 2H), 4.24-4.27 (m, CH₂O, 2H), 4.35-4.40 (m, CH₂O, 2H), 5.26 (s, CHO, 1H), 5.55-5.56 (d, J = 6.5 Hz, ArCH₂O, 2H), 6.21-6.26 (m, CHO, 1H), 6.91-6.93 (d, $J_1 = 2.5$ Hz, $J_2 = 9$ Hz, ArH, 1H), 7.18-7.19 (d, J = 2.5 Hz, ArH, 1H), 7.55-7.58 (d, J = 9 Hz, ArH, 1H),8.17-8.20 (d, J = 9 Hz, ArH, 1H); ESI MS calcd for C₃₆H₅₆N₄O₁₁P,751.82 (M+H⁺), found 751.37; C₃₆H₅₉N₅O₁₁P, 768.85 (M+NH₄⁺), found 768.39.

Compound 5d

Yield 61%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m CH₃, 3H), 1.26-1.33 (m, CH₂+ CH₃, 21H), 1.40-1.43 (m, CH₂, 2H), 1.74-1.77 (m, CH₂, 2H), 1.85 (s, CH₃, 3H), 2.27-2.29 (m, CH₂, 2H), 3.07-3.11 (q, *J* = 7.5 Hz, CH₂, 6H), 3.79-3.80 (m, CHO, 2H), 4.00-4.03 (m, CH, 2H), 4.13 (s, CH, 1H), 5.06 (s, CHO, 1H),5.31-5.32 (s, ArCH₂O, 2H), 6.16-6.21 (m, CH, 1H), 6.77-6.79 (m, 1H, ArH), 7.30-7.33 (m, 1H, ArH), 7.64-7.65 (m, 1H, ArH), 8.05-8.07 (m, 1H, ArH).ESI MS calcd for C₂₇H₄₀N₃O₁₁P,613.59(M-Et₃N+H⁺), found 614.25; C₂₇H₄₄N₄O₁₁P,631.63 (M-Et₃N+NH₄⁺), found 631.28.

Compound 6d

Yield 57%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m CH₃, 3H), 1.26-1.33 (m, CH₂+ CH₃, 25H), 1.40-1.43 (m, CH₂, 2H), 1.74-1.77 (m, CH₂, 2H), 1.85 (s, CH₃, 3H), 2.27-2.29 (m, CH₂, 2H), 3.07-3.11 (q, *J* = 7.5 Hz, CH₂, 6H), 3.79-3.89 (m, CHO, 2H), 4.00-4.03 (m, CH, 2H), 4.13 (s, CH, 1H), 5.06 (s, CHO, 1H),5.31-5.32 (s, ArCH₂O, 2H), 6.20-6.22 (m, CH, 1H), 6.77-6.79 (m, 1H, ArH), 7.30-7.33 (m, 1H, ArH), 7.64-7.65 (m, 1H, ArH), 8.05-8.07 (m, 1H, ArH).ESI MS calcd for C₂₉H₄₅N₃O₁₁P,642.65 (M-Et₃N+H⁺), found 642.28; C₂₉H₄₇N₄O₁₁P,658.67 (M-Et₃N+NH₄⁺), found 659.31.

Compound 7d

Yield 52%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m CH₃, 3H), 1.26-1.33 (m, CH₂+ CH₃, 27H), 1.39-1.45 (m, CH₂, 2H), 1.74-1.79 (m, CH₂, 2H), 1.85 (s, CH₃, 3H), 2.27-2.49 (m, CH₂, 2H), 3.09-3.13 (q, J = 7.5 Hz, CH₂, 6H), 3.79-3.93 (m, CHO, 2H), 4.02-4.16 (m, CH, 2H), 4.13 (s, CH, 1H), 5.10 (s, CHO, 1H),5.31-5.32 (s, ArCH₂O, 2H), 6.22-6.25 (m, CH, 1H), 6.77-6.79 (m, 1H, ArH), 7.35-7.37 (m, 1H, ArH), 7.70-7.71 (m, 1H, ArH), 8.05-8.07 (m, 1H, ArH). ESI MS calcd for C₃₁H₄₉N₃O₁₁P,670.71(M-Et₃N+H⁺), found 670.31; C₃₁H₅₁N₄O₁₁P 686.73 (M-Et₃N+NH₄⁺), found 687.34.

Compound 8d

Yield 54%, yellow solid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86-0.89$ (m, *CH*₃, 3H), 1.26-1.33 (m, *CH*₂+ *CH*₃, 31H), 1.39-1.45 (m, *CH*₂, 2H), 1.73-1.79 (m, *CH*₂, 2H), 1.86 (s, *CH*₃, 3H), 2.27-2.49 (m, *CH*₂, 2H), 3.07-3.11 (q, *J* = 7.5 Hz, *CH*₂, 6H), 3.79-3.93 (m, *CH*O, 2H), 4.00-4.13 (m, *CH*, 2H), 4.13 (s, *CH*, 1H), 5.07 (s, *CH*O, 1H), 5.31-5.32 (s, ArC*H*₂O, 2H), 6.20-6.23 (m, *CH*, 1H), 6.77-6.79 (m, 1H, Ar*H*), 7.30-7.34 (m, 1H, Ar*H*), 7.65-7.66 (m, 1H, Ar*H*), 8.06-8.08 (m, 1H, Ar*H*). ESI MS calcd for C₃₃H₅₃N₃O₁₁P,698.76(M-Et₃N+H⁺), found 698.34, C₃₃H₅₅N₄O₁₁P,714.78 (M-Et₃N+NH₄⁺), found 715.37.

7.1. NMR spectra

7.2. MS spectra

