Supplementary Information

Aggregation morphologies of a series of heterogemini surfactants with a hydroxyl headgroup in aqueous solution

Shengwei Liu,^a Xiaowen Wang,^b Liming Chen,^b Linxi Hou*^b and Tianhua Zhou*^c

^aDepartment of PhysicalChemistry, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China

^b Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

^cDepartmentofChemicalandBiomolecularEngineering,School of ChemicalandBiomedical Engineering, Nanyang Technological University,62Nanyang Drive,Singapore 637459, Singapore

Synthesis of C_mOhpNC_n

1. The molecular structure of C_mOhpNC_nis shown as follows,

$$\begin{array}{c} OH & CH_3 \\ | & |_+ \\ C_mH_{2m+1}OCH_2CHCH_2 - N - C_nH_{2n+1} \bullet Br \\ | & \\ CH_3 \end{array}$$

m, *n* = 10, 8; 10, 14; 12, 8; 12, 10; 12, 12; 12, 14; 14, 8 and 14, 10

Starting materials: Epichlorohydrin, *N*, *N*-dimethyldecylamine, *n*-decanol, *n*-dodecanol, *n*-tetradecanol, *n*-hexadecanol, hydrobromide were purchased from Sinopharm Chemical Reagent Co., Ltd (China)., *N*, *N*-dimethyloctylamine *N*, *N*-dimethyldodecylamine, *N*, *N*-dimethyltetra-decylamine were purchased from Tokyo Chemical Industry Co., Ltd (Japan) ,All the reagents used were of analytical grade.

2. Synthetic routes

$$CH_{2}C-CH-CH_{2} \xrightarrow{C_{m}H_{2m+1}OH} C_{m}H_{2m+1}OCH_{2}-CH-CH_{2} \xrightarrow{C_{n}H_{2n+1}N(CH_{3})_{2} \bullet HBr} C_{n}H_{2n+1}OCH_{2}-CH-CH_{2} \xrightarrow{C_{n}H_{2n+1}N(CH_{3})_{2} \bullet HBr} C_{n}H_{2n+1}OCH_{2}CHCH_{2} \xrightarrow{C_{n}H_{2n+1}OCH_{2}-CH} Br^{-}$$

3. A detailed description about the synthesis

This compound was synthesized with the method reported by Tianhua Zhou¹, which is briefly described as follows: *N*, *N*-dimethylalkyl amine (0.01mol, 1.0 equiv) and *N*, *N*-dimethylalkyl amine hydrobromide (0.01mol, 1.0 equiv) were added into a mixed ethanol-water solution (80:20, 60ml). The mixture was heated to 50°C under stirring, and then alkyl glycidyl ether (0.01mmol, 1.0 equiv) prepared from epichlorohydrin^{1, 2} were added under vigorous agitation. After reacting for 4 hours, the mixture was cooled and the solvent was removed underreduced pressure. The product was recrystallized from ethyl acetate three times, followed by vacuum drying to give C_mOhpNC_n (*m*, *n* = 10, 8; 10, 14; 12, 8; 12, 10; 12, 12; 12, 14; 14, 8 and 14, 10) as white solids. The overall yield is from 29 to 79%.

4. ¹HNMR and elemental analysis of final products

C₁₀OhpNC₈ (400MHz, CDCl₃, TMS): d 0.87-0.88 (*t*, 6H, 2*CH*₃-CH₂-), 1.26-1.34 (*m*, 24H, CH₃-(*CH*₂)₇-CH₂-CH₂-O-CH₂-O-CH₂-O-CH₂-O-CH₂-O-CH₂-O-CH₂-), 1.74 (*m*, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.39-3.49 (*m*, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-O-CH₂-O-CH₂-O, 3.51-3.60 (*m*, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.48 ppm (*m*, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Anal Calcd for C₂₃H₅₀BrNO₂: C, 61.04; H, 11.14; N, 3.10. Found: C, 60.66; H, 11.49; N, 2.72.

C₁₀OhpNC₁₄(400MHz, CDCl₃, TMS):d 0.81-0.83 (*t*, 6H, 2*CH*₃-CH₂-), 1.18 (*m*, 36H, CH₃-(*CH*₂)₇-CH₂-CH₂-O- and CH₃-(*CH*₂)₁₁-CH₂-CH₂-N⁺(CH₃)₂-), 1.44-1.47 (*m*, 2H, CH₃-(CH₂)₇-*CH*₂-CH₂-O-CH₂-), 1.67 (*m*, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.31-3.36 (*m*, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-CH(OH)- and -CH₂-*CH*₂-O-CH₂-CH(OH)-), 3.48-3.52 (*m*, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.50 ppm (*m*, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₉H₆₂BrNO₂: C, 64.90; H, 11.64; N, 2.61. Found: C, 63.93; H, 12.08; N, 2.09.

C₁₂OhpNC₈ (400MHz, CDCl₃, TMS):d 0.88 (*t*, 6H, 2*CH*₃-CH₂-), 1.26 (*m*, 28H, CH₃-(*CH*₂)₉. CH₂-CH₂-O- and CH₃-(*CH*₂)₅-CH₂-CH₂-N⁺(CH₃)₂-), 1.52 (*m*, 2H, CH₃-(CH₂)₇-*CH*₂-CH₂-O-CH₂-), 1.74 (*m*, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.39-3.42 (*m*, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-CH(OH)- and-CH₂-*CH*₂-O-CH₂-CH(OH)-), 3.57 (*m*, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.49 ppm (*m*, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₅H₅₄BrNO₂: C, 62.48; H, 11.33; N, 2.91. Found: C, 62.17; H, 11.52; N, 2.54.

C₁₂OhpNC₁₀ (400MHz, CDCl₃, TMS): d 0.88 (t, 6H, 2 CH_3 -CH₂-), 1.26 (m, 32H, CH₃-(CH_2)₉. CH₂-CH₂-O- and CH₃-(CH_2)₇-CH₂-CH₂-N⁺(CH₃)₂-), 1.52 (m, 2H, CH₃-(CH₂)₇-CH₂-CH₂-O-CH₂-), 1.74 (m, 2H, - CH_2 -CH₂-N⁺(CH₃)₂-CH₂-), 3.39-3.43 (m, 10H, -CH₂-N⁺(CH_3)₂-CH₂-, - CH_2 -N⁺(CH₃)₂-CH₂-CH(OH)- and-CH₂- CH_2 -O-CH₂-CH(OH)-), 3.56 (m, 4H, -CH₂-O-CH₂-CH(OH)- and -N⁺(CH₃)₂-CH₂-CH(OH)-), and 4.49 ppm (m, 1H, -O-CH₂-CH(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₇H₅₈BrNO₂: C, 63.75; H, 11.49; N, 2.75. Found: C, 63.01; H, 11.38; N, 2.47.

C₁₂OhpNC₁₂(400MHz, CDCl₃, TMS): d 0.81 (t, 6H, 2*CH*₃-CH₂-), 1.24 (m, 36H, CH₃-(*CH*₂)₉-CH₂-CH₂-O- and CH₃-(*CH*₂)₉-CH₂-CH₂-N⁺(CH₃)₂-), 1.45 (m, 2H, CH₃-(CH₂)₇-*CH*₂-CH₂-O-CH₂-), 1.67 (m, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.32-3.37 (m, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-CH(OH)- and -CH₂-*CH*₂-O-CH₂-CH(OH)-), 3.51(m, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.41 ppm (m, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₉H₆₂BrNO₂: C, 64.90; H, 11.64; N, 2.61. Found: C, 63.86; H, 12.12; N, 2.29.

C₁₂OhpNC₁₄ (400MHz, CDCl₃, TMS): d 0.82 (t, 6H, 2 CH_3 -CH₂-), 1.24 (m, 40H, CH₃-(CH_2)₉-CH₂-CH₂-O- and CH₃-(CH_2)₁₁-CH₂-CH₂-N⁺(CH₃)₂-), 1.46 (m, 2H, CH₃-(CH₂)₇- CH_2 -CH₂-O-CH₂-), 1.67 (m, 2H, - CH_2 -CH₂-N⁺(CH₃)₂-CH₂-), 3.32-3.37 (m, 10H, -CH₂-N⁺(CH_3)₂-CH₂-, - CH_2 -N⁺(CH₃)₂-CH₂-CH(OH)- and -CH₂- CH_2 -O-CH₂-CH(OH)-), 3.51(m, 4H, -CH₂-O- CH_2 -CH(OH)- and -N⁺(CH₃)₂- CH_2 -CH(OH)-), and 4.42 ppm (m, 1H, -O-CH₂-CH(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₃₁H₆₆BrNO₂: C, 65.93; H, 11.78; N, 2.48. Found: C, 63.30; H, 12.11; N, 2.32.

C₁₄OhpNC₈ (400MHz, CDCl₃, TMS):d 0.82 (*t*, 6H, 2*CH*₃-CH₂-), 1.19-1.28 (*m*, 32H, CH₃-(*CH*₂)₁₁-CH₂-CH₂-O- and CH₃-(*CH*₂)₅-CH₂-CH₂-N⁺(CH₃)₂-), 1.44-1.47 (*m*, 2H, CH₃-(CH₂)₇-*CH*₂-CH₂-O-CH₂-), 1.68 (*m*, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.31-3.37 (*m*, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-CH(OH)- and -CH₂-*CH*₂-O-CH₂-CH(OH)-), 3.50-3.54 (*m*, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.43 ppm (*m*, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₇H₅₈BrNO₂: C, 63.75; H, 11.49; N, 2.75. Found: C, 63.07; H, 12.15; N, 2.59.

C₁₄OhpNC₁₀ (400MHz, CDCl₃, TMS): d 0.81 (*t*, 6H, 2*CH*₃-CH₂-), 1.19-1.28 (*m*, 36H, CH₃-(*CH*₂)₁₁-CH₂-CH₂-O- and CH₃-(*CH*₂)₇-CH₂-CH₂-N⁺(CH₃)₂-), 1.44-1.47 (*m*, 2H, CH₃-(CH₂)₇-*CH*₂-CH₂-O-CH₂-), 1.67 (*m*, 2H, -*CH*₂-CH₂-N⁺(CH₃)₂-CH₂-), 3.32-3.37 (*m*, 10H, -CH₂-N⁺(*CH*₃)₂-CH₂-, -*CH*₂-N⁺(CH₃)₂-CH₂-CH(OH)- and -CH₂-*CH*₂-O-CH₂-CH(OH)-), 3.50-3.53 (*m*, 4H, -CH₂-O-*CH*₂-CH(OH)- and -N⁺(CH₃)₂-*CH*₂-CH(OH)-), and 4.42 ppm (*s*, 1H, -O-CH₂-*CH*(OH)-CH₂-N⁺(CH₃)₂-); Calcd for C₂₉H₆₂BrNO₂: C, 64.90; H, 11.64; N, 2.61. Found: C, 63.56; H, 12.03; N, 2.28.

Measurements of C_mOhpNC_n

1 Krafft temperature

The electric conductivities of C_mOhpNC_n were measured by Model Delta 326 conductometer with the temperature ranging from 15 to 70 °C. The Krafft temperatures were determined by the break of conductivity vs. temperature plots.²

g. S1 The electric conductivities of different gemini surfactants as a function of temperature: (a) C₁₀OhpNC₈, (b) C₁₀OhpNC₁₄, (c) C₁₂OhpNC₈, (d) C₁₂OhpNC₁₀, (e) C₁₂OhpNC₁₂, (f) C₁₂OhpNC₁₄, (g) C₁₄OhpNC₈, (h) C₁₄OhpNC₁₀.

2 CMC

The electric conductivities of C_mOhpNC_n were measured by Model Delta 326 conductometer at 50°C. The CMC values were determined by the break of conductivity vs. concentration plots.

Fig. S2The electric conductivities of different gemini surfactants as a function of concentration: (a) $C_{10}OhpNC_8$, (b) $C_{10}OhpNC_{14}$, (c) $C_{12}OhpNC_8$, (d) $C_{12}OhpNC_{10}$, (e) $C_{12}OhpNC_{12}$, (f) $C_{12}OhpNC_{14}$, (g) $C_{14}OhpNC_8$, (h) $C_{14}OhpNC_{10}$.

References

1T. H. Zhou, J. X. Zhao, J. Colloid Interface Sci., 2009, 331, 476-483.

2 R. Zana, H. Lévy, D. Danino, Y. Talmon and K. Kwetkat, Langmuir, 1997, 13, 402-408.