Studying orthogonal self-assembled systems: microstructure of gelled bicontinuous microemulsions

Michaela Laupheimer,^a Thomas Sottmann,^a Ralf Schweins^b and Cosima Stubenrauch*^a

*corresponding author

^a Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart,

Germany. Fax: +49-(0)711-685-64443; Tel: +49-(0)711-685-64470;

E-mail: cosima.stubenrauch@ipc.uni-stuttgart.de

^b Institut Laue Langevin, LSS group, 71 avenue des Martyrs, F-38000 Grenoble, France.

- Supporting Information -

Bragg peaks in the gelled bicontinuous microemulsion

Fig. 1 Background-subtracted SANS data of the gelled bicontinuous microemulsion H₂O– *n*-decane/12-HOA–C₁₀E₄ ($\phi = 0.5$, $\gamma = 0.150$) in bulk (diamonds) and film (hexagons) contrast. Note that for the system with 1.5 wt.% 12-HOA in bulk contrast the Bragg peaks were not strippable from the noisy background. The data of the binary gel d22-*n*-decane/12-HOA with 5.0 wt% gelator (black circles) are shown for comparison without subtraction of the incoherent background. The positions of the Bragg peaks are marked by the arrows. (redrawn from ref. 1)

Reference

1 M. Laupheimer, *Gelled Bicontinuous Microemulsions: A New Type of Orthogonal Self-Assembled Systems* in series *Springer Theses 2014*, Springer, Heidelberg, 2014, ch. 4, pp. 85-126.