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Models employed in the least-square fitting data analysis 

The scattering cross section per unit mass of solute as a function of scattering vector q for a 

sample of coexisting free surfactant monomers and monodisperse micelles can be written as 

follows 

 

𝑑𝜎𝑚(𝑞)
𝑑Ω

= Δ𝜌𝑚2 𝑀𝑤𝑃(𝑞)[1 + 𝛽(𝑞)(𝑆(𝑞) − 1)]                                                                          (S1) 

 

𝑃(𝑞) ≡ 〈𝐹2(𝑞)〉0 is the orientational averaged form factor for ellipsoidal micelles taking into 

account the geometrical shape of the micelles and F(q) is the amplitude. The inter-micellar in-

teractions were found be weak in presence of large amounts of salt and the quality of the model 

fits could never be improved by introducing a structure factor S(q) which was simply set to uni-

ty.  

 

Rather small and compact micelles were best fitted using a model for triaxial ellipsoids with half 

axis a, b and c. The orientational averaged form factor for ellipsoids equals  

 

〈𝐹2(𝑞)〉0 =
2
𝜋
� � 𝐹2�𝑞, 𝑟(𝑎, 𝑏, 𝑐,𝜙,𝜃)� sin𝜙𝑑𝜙

𝜋/2

0

𝜋/2

0
𝑑𝜃                                                    (S2) 

 

where F(q, r) = 3[sin(qr) − qrcos(qr)]/(qr)3 and 

 𝑟(𝑎, 𝑏, 𝑐,𝜙, 𝜃) = �(𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃) sin2 𝜙 + 𝑐2 cos2 𝜙.1 

 

The following scattering cross-section was used for polydisperse rodlike micelles2 

 

𝐼𝑎𝑔𝑔(𝑞) = Δ𝜌𝑚2 𝑃𝑐𝑠(𝑞)𝑃𝑟(𝑞)〈𝑀𝑤〉    (S3) 

 

where 〈Mw〉 is the weight-average molar mass. The form factor Pcs(q) for an elliptical cross-

section with half axes a and b, respectively, is given by 
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𝑃𝑐𝑠(𝑞,𝑎, 𝑏) =
2
𝜋
� �

2𝐵1�𝑞𝑟(𝑎, 𝑏,𝜙)�
𝑞𝑟(𝑎, 𝑏,𝜙) �

2

𝑑𝜙
𝜋/2

0
                                                                          (S4) 

 

where  

 

𝑟(𝑎, 𝑏,𝜙) = �𝑎2 sin2 𝜙 + 𝑏2 cos2 𝜙    (S5) 

 

and B1(x) is the Bessel function of first order. 

 

The scattering function for polydisperse rigid rods can be written as follows 

 

𝑃𝑟(𝑞) =
∫𝑁𝑟𝑜𝑑(𝐿)𝐿2𝑆𝑟𝑜𝑑(𝑞, 𝐿)𝑑𝐿

∫𝑁𝑟𝑜𝑑(𝐿)𝐿2𝑑𝐿
                                                                                               (S6) 

 

where Nrod(L) is the number distribution of micelles with respect to their length L and the form 

factor for an infinitely thin rod is given by3 

 

𝑆𝑟𝑜𝑑(𝑞, 𝐿) = 2Si(𝑞𝐿)− 4 sin2(𝑞𝐿/2) /(𝑞𝐿)2    (S7) 

 

where 

 

Si(𝑥) = �
sin 𝑡
𝑡

𝑑𝑡
𝑥

0
                                                                                                                           (S8) 

 

For one sample in presence of [NaBr] = 0.3 M, the model fits could be significantly improved 

using a model for flexible wormlike micelles, i.e. eqn S3 with the following expression for Pr  
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𝑃𝑟(𝑞) =
∫𝑁𝑤𝑜𝑟𝑚(𝐿)𝐿2𝑆𝐾𝑃�𝑞, 𝐿, 𝑙𝑝�𝑑𝐿

∫𝑁𝑤𝑜𝑟𝑚(𝐿)𝐿2𝑑𝐿
                                                                                       (S9) 

 

Eqn S9 is valid for polydisperse self-avoiding Kratky-Porod worm-like chains with a contour 

length L, persistence length lp. We have employed the expressions for the scattering function 

SKP(q, L, lp) given by Pedersen and Schurtenberger.4 

 

In our data analysis we have assumed the number density of lengths of rigid and flexible rodlike 

micelles to follow a Schultz distribution in the entire range of aggregation numbers (0 < N < ∞) , 

i.e. 

 

𝑁𝑟𝑜𝑑/𝑤𝑜𝑟𝑚(𝐿) =
𝐿𝑧

𝑧!
�
𝑧 + 1
〈𝐿〉𝑁

�
𝑧+1

𝑒−𝐿(𝑧+1)/〈𝐿〉𝑁                                                                           (S10) 

 

where 〈L〉N is the number-weighted average length of the micelles. Below we have presented our 

results in terms of the volume-weighted average length 〈L〉 = (z + 2)/(z +1)×〈L〉N, i.e. the mean 

value as calculated from the probability distribution of finding an aggregated surfactant in a mi-

celle of length L, and the corresponding relative standard deviation σL /〈L〉 = 1/√𝑧 + 2. 

 

The number of fit parameters, including residual incoherent background scattering, is M = 7-8 

and always much smaller than the number of data points N = 150-220. We have aimed at keep-

ing our models as simple as possible and always been careful not to introduce any additional 

fitting parameters unless they give rise to a significantly improved quality of the model fit. 

 

Both micelles and bilayer aggregates were fitted with a homogeneous one-shell model and the 

quality of the fits could not be improved using a core-and-shell model or a model taking into 

account internal differences in scattering length densities in the micelle core. This is not surpris-

ing considering that the head group of SOS has a similar scattering length density as deuterium 

oxide and is invisible in a SANS experiment5 whereas CTAB has almost identical scattering 
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length densities as the surfactant tails and that the head groups only protrude a few angstroms 

outside the core. 

 

Throughout the data analyses corrections were made for instrumental smearing.6,7 For each 

instrumental setting the ideal model scattering curves were smeared by the appropriate resolu-

tion function when the model scattering intensity was compared with the measured one by 

means of least-squares methods.  The parameters in the model were optimized by means of con-

ventional least-squares analysis and their errors were calculated with conventional methods.8,9 

The quality of the fits were measured in terms of the reduced chi-squared parameter defined as 

 

𝜒2 =
1

𝑁 −𝑀
��

𝐼𝑒𝑥𝑝(𝑞𝑖) − 𝐼𝑚𝑜𝑑(𝑞𝑖)
𝜎𝑖

�
2𝑁

𝑖=1

                                                                                      (S11) 

 

where Iexp(qi) and Imod(qi) are the experimental and model intensities, respectively, at a scattering 

vector modulus qi, σi is the statistical uncertainties on the data points, N is the total number of 

data points and M is the number of parameters optimized in the model fit. 
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Small-angle neutron scattering (SANS) data with model fits 

  

Figure S1. Normalized scattering cross section as a function of the scattering vector q for CTAB in deuter-

ium oxide. The surfactant concentrations of the samples are [CTAB] = 40 mM (squares), 20 mM (circles) 

and 10 mM (triangles). Symbols represent SANS data and the solid lines represent the best available fits 

with a model for general ellipsoids. The results of the fits are given in Table 1. The quality of the fits as 

measured by χ2 is 14.0 (squares), 4.3 (circles) and 2.7 (triangles). 
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Figure S2. Normalized scattering cross section as a function of the scattering vector q for mixtures of 

CTAB and SOS in deuterium oxide for a given mole fraction of SOS in solution y = 0.05. The overall surfac-

tant concentrations of the samples are [SOS] + [CTAB] = 40 mM (squares), 20 mM (circles) and 10 mM 

(triangles). Symbols represent SANS data and the solid lines represent the best available fits with a model 

for general ellipsoids. The results of the fits are given in Table 1. The quality of the fits as measured by χ2 

is 7.8 (squares), 3.2 (circles) and 3.1 (triangles). 
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Figure S3. Normalized scattering cross section as a function of the scattering vector q for mixtures of 

CTAB and SOS in deuterium oxide for a given mole fraction of SOS in solution y = 0.15. The overall surfac-

tant concentrations of the samples are [SOS] + [CTAB] = 40 mM (squares), 20 mM (circles) and 10 mM 

(triangles). Symbols represent SANS data and the solid lines represent the best available fits with a model 

for general ellipsoids (circles and triangles) or polydisperse rodlike micelles with an elliptical cross-

section (squares). The results of the fits are given in Table 1. The quality of the fits as measured by χ2 is 2.5 

(squares), 2.3 (circles) and 3.6 (triangles). 
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Figure S4. Normalized scattering cross section as a function of the scattering vector q for mixtures of 

CTAB and SOS in deuterium oxide for a given mole fraction of SOS in solution y = 0.25. The overall surfac-

tant concentrations of the samples are [SOS] + [CTAB] = 40 mM (squares), 20 mM (circles) and 10 mM 

(triangles). Symbols represent SANS data and the solid lines represent the best available fits with a model 

for polydisperse rodlike micelles with an elliptical cross-section. The results of the fits are given in Table 

1. The quality of the fits as measured by χ2 is 5.0 (squares), 2.0 (circles) and 1.7 (triangles). 
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Figure S5. Normalized scattering cross section as a function of the scattering vector q for mixtures of 

CTAB and SOS in deuterium oxide for a given mole fraction of SOS in solution y = 0.30. The overall surfac-

tant concentrations of the samples are [SOS] + [CTAB] = 40 mM (squares), 20 mM (circles) and 10 mM 

(triangles). Symbols represent SANS data and the solid lines represent the best available fits with a model 

for polydisperse rodlike (circles and triangles) or wormlike (squares) micelles with an elliptical cross-

section. The results of the fits are given in Table 1. The quality of the fits as measured by χ2 is 9.8 

(squares), 3.6 (circles) and 1.9 (triangles). 
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The general micelle model 

The geometrical shape of tablet-shaped micelles considered in the general micelle model is given 

in Fig. S6. 

 

Figure S6. Schematic illustration of a tablet-shaped micelle modelled as consisting of a central rectangular 

bilayer of thickness 2ξ, width 2R and length L with two half-circular ends with radius R. The bilayer part is 

surrounded by two straight half cylindrical rims of length L and radius ξ along its long sides and two semi-

toroidal rim parts of radius ξ along the half circular ends of the micelle. 

 

The free energy of a self-assembled interface as a function of mean and Gaussian curvature (H 

and K, respectively) may be obtained from the Helfrich-expression as10 

 

Ε = 𝛾0𝐴 + 2𝑘𝑐 ∫(𝐻 −𝐻0)2𝑑𝐴 + 𝑘�𝑐 ∫𝐾𝑑𝐴    (S12) 

 

The first term on the right-hand side in eqn S12 (= γ0A) represents the free energy of stretching a 

self-assembled interface with area A and interfacial tension γ0. The second and third terms take 

into account effects due to the dependence of free energy on the local curvature of the self-

assembled interface, usually referred as to the bending free energy. According to the Gauss-

Bonnet theorem, the last term in eqn S12 equals 4𝜋𝑘�𝑐 for a geometrically closed interface and 

does not depend on the size of the self-assembled interfacial aggregate. 

 

From eqn S12 it is possible to derive an expression of the free energy Ε of the tablet-shaped mi-

celle shown in Fig. S1 as a function of the dimensionless length l ≡ L/ξ and dimensionless half 

width r ≡ R/ξ, i.e.11 
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Ε(𝑟, 𝑙)
𝑘𝑇

= 𝛼 + 𝛿𝜓(𝑟)𝛽(𝜋𝑟 + 𝑙) + 2𝑟(𝜋𝑟 + 2𝑙)𝜆                                                                          (S13) 

 

where 𝜆 ≡ 𝜉2𝛾𝑝/𝑘𝑇 is the reduced and γp the real planar interfacial tension of the self-assembled 

interface. 𝛼 ≡ 2𝜋�3𝑘𝑐 + 2𝑘�𝑐 − 8𝜉𝑘𝑐𝐻0�/𝑘𝑇 + 4𝜋𝜆,  𝛽 ≡ 𝜋𝑘𝑐(1− 4𝜉𝐻0)/𝑘𝑇 + 2𝜋𝜆 and 𝛿 ≡ 

2𝜋𝑘𝑐/𝑘𝑇 are three dimensionless parameters taking into account the bending free energy. The 

ψ-function (0 < ψ < 1) equals unity in the limit r → 0 and zero as r → ∞.11,12 

 

By means of taking into account the entropy of self-assembling surfactant molecules to form a 

dispersion of tablet-shaped micelles gives the following relation between the volume fraction of 

micelles φmic and bending elasticity constants, 

 

𝜙𝑚𝑖𝑐 =
𝜋𝜉6

𝑣2
�

8𝑟2 + 6𝜋𝑟 + 𝜋2

𝛽 + 4𝜆𝑟
𝑒−𝛿𝜓(𝑟)−𝜋𝛽𝑟−2𝜋𝜆𝑟2𝑑𝑟

∞

0

                                                             (S14) 

 

From the length and width distribution function given in eqn S14 it is straightforward to calcu-

late the average width 〈Ω〉 ≡ 2(〈R〉 + ξ) and length 〈Λ〉 ≡ 〈L〉 + 〈Ω〉, in a dispersed phase of tablet-

shaped micelles, as functions of the different bending elasticity constants. Similarly, it is possible 

to estimate the bending elasticity constants from experimentally obtained values of micelle 

width and length. 
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Calculation of maximum aggregation number of strictly spherical micelles 
 
 
The volume in Å3 of a linear aliphatic alkyl chains with n carbons is given by13 

 

v = 27.4 +26.9n     (S15) 

 

Likewise, the length in Å of the fully stretched out chain is given by 

 

lc = 1.5 + 1.265n     (S16) 

 

As a result, the maximum volume of a spherical micelle is set by 𝑉𝑚𝑎𝑥 = 4𝜋𝑙𝑐3/3 and the corre-

sponding aggregation number 𝑁𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥/𝑣 = 4𝜋𝑙𝑐3/3𝑣 . For n = 8 this gives Nmax =27 whereas 

Nmax = 95 for n = 16. For a mixed SOS/CTAB micelle, the maximum radius is set by the longer 

chain, i.e. lc = 21.7 for CTAB whereas the average molecular volume is given by the linear relation 

v = xv8 + (1 –x)v12. As a result, Nmax = 101 for x = 0.15 and Nmax = 103 for x = 0.20. 
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Derivation of relation between growth behavior and polydispersity for self-assembled aggregates 

The following derivation was first carried out by Hall and Pethica in 1967.14 Here we have con-

sidered the distributions as continuous and used integral approximations, which gives an identi-

cal result as in ref 14. 

 

The average aggregation number in a size distribution φ(N) is defined as 

 

〈𝑁〉 = ∫𝑁𝜙(𝑁)𝑑𝑁
∫𝜙(𝑁)𝑑𝑁

     (S17) 

 

Likewise, the average of the aggregation number squared equals 

 

〈𝑁2〉 = ∫𝑁2𝜙(𝑁)𝑑𝑁
∫𝜙(𝑁)𝑑𝑁

     (S18) 

 

The total volume fraction of aggregated surfactant equals 

 

𝜙𝑡 = ∫𝜙(𝑁)𝑑𝑁     (S19) 

 

Taking the logarithm of eqn (S17) and combining with eqn (S19) gives 

 

ln〈𝑁〉 = ln∫𝑁𝜙(𝑁)𝑑𝑁 − ln𝜙𝑡    (S20) 

 

and the derivative with respect to ln𝜙𝑡 

 
𝑑 ln〈𝑁〉
𝑑 ln𝜙𝑡

= 𝑑 ln∫𝑁𝜙(𝑁)𝑑𝑁
𝑑 ln𝜙𝑡

− 1     (S21) 

 

Using the following expression 

 

𝜙(𝑁) = 𝑒−𝑁�Δ𝜇𝑚𝑖𝑐−𝑘𝑇 ln𝜙𝑓𝑟𝑒𝑒�/𝑘𝑇 = 𝑒−𝑁Δ𝜇𝑚𝑖𝑐/𝑘𝑇𝑒𝑁 ln𝜙𝑓𝑟𝑒𝑒   (S22) 

 

we obtain 

 

𝑑 ln∫𝑁𝜙(𝑁)𝑑𝑁
𝑑 ln𝜙𝑓𝑟𝑒𝑒

= 1
∫𝑁𝜙(𝑁)𝑑𝑁

𝑑 ∫𝑁𝑒−𝑁Δ𝜇𝑚𝑖𝑐/𝑘𝑇𝑒𝑁ln𝜙𝑓𝑟𝑒𝑒𝑑𝑁
𝑑 ln𝜙𝑓𝑟𝑒𝑒

   (S23) 

 

where 
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𝑑 ∫𝑁𝜙(𝑁)𝑑𝑁𝑑𝑁
𝑑 ln𝜙𝑓𝑟𝑒𝑒

= 𝑑 ∫𝑁𝑒−
𝑁Δ𝜇𝑚𝑖𝑐

𝑘𝑇 𝑒𝑁 ln𝜙𝑓𝑟𝑒𝑒𝑑𝑁
𝑑 ln𝜙𝑓𝑟𝑒𝑒

= ∫𝑁2𝑒−𝑁Δ𝜇𝑚𝑖𝑐/𝑘𝑇𝑒𝑁 ln𝜙𝑓𝑟𝑒𝑒𝑑𝑁 = ∫𝑁2𝜙(𝑁)𝑑𝑁

      (S24) 

Combining eqns (S23) and (S24) consequently gives 

 
𝑑 ln∫𝑁𝜙(𝑁)𝑑𝑁

𝑑 ln𝜙𝑓𝑟𝑒𝑒
= ∫𝑁2𝜙(𝑁)𝑑𝑁

∫𝑁𝜙(𝑁)𝑑𝑁
= 〈𝑁2〉

〈𝑁〉
    (S25) 

 

Likewise, in a similar manner it follows that 

 
𝑑 ln𝜙𝑡

𝑑 ln𝜙𝑓𝑟𝑒𝑒
= 𝑑 ln∫𝜙(𝑁)𝑑𝑁

𝑑 ln𝜙𝑓𝑟𝑒𝑒
= ∫𝑁𝜙(𝑁)𝑑𝑁

∫𝜙(𝑁)𝑑𝑁
= 〈𝑁〉    (S26) 

 

and combining eqns (S25) and (S26) gives 

 

𝑑 ln∫𝑁𝜙(𝑁)𝑑𝑁
𝑑 ln𝜙𝑡

= 𝑑 ln∫𝑁𝜙(𝑁)𝑑𝑁
𝑑 ln𝜙𝑓𝑟𝑒𝑒

� 𝑑 ln𝜙𝑡
𝑑 ln𝜙𝑓𝑟𝑒𝑒

�
−1

= 〈𝑁2〉
〈𝑁〉2

   (S27) 

 

Eqns (S20) and (S27) gives 

 
𝑑 ln〈𝑁〉
𝑑 ln𝜙𝑡

= 𝑑(ln ∫𝑁𝜙(𝑁)𝑑𝑁−𝑑 ln𝜙𝑡)
𝑑 ln𝜙𝑡

= 〈𝑁2〉
〈𝑁〉2

− 1    (S28) 

 

The relative standard deviation σN/〈N〉 is defined by the relation 

 

�𝜎𝑁〈𝑁〉�
2

= 〈𝑁2〉−〈𝑁〉2

〈𝑁〉2
= 〈𝑁2〉

〈𝑁〉2
− 1     (S29) 

 
Combining eqns (S28) and (S29) finally gives  

 

�𝜎𝑁〈𝑁〉� = �𝑑 ln〈𝑁〉
𝑑 ln𝜙𝑡

     (1) 
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Derivation of relation between relative standard deviations with respect to aggregation number 

and radius for spherical micelles 

The relative standard deviation with respect to aggregation number N is defined as 

 

𝜎𝑁
〈𝑁〉

= �1 −
〈𝑁2〉
〈𝑁〉2

                                                                                                                                (S30) 

 

and with respect to radius R 

 

𝜎𝑅
〈𝑅〉

= �1 −
〈𝑅2〉
〈𝑅〉2

                                                                                                                                 (S31) 

 

Since N ∝ R3 for spherical geometry we obtain the following relation 

 

〈𝑁2〉
〈𝑁〉2

=
〈𝑅6〉
〈𝑅〉6

                                                                                                                                          (S32) 

 

From eqns S30 and S31 it follows 

 

〈𝑅6〉
〈𝑅〉6

= �1− �
𝜎𝑅
〈𝑅〉

�
2
�
3

                                                                                                                      (S33)       

 

Combining eqns S27, S28 and S30 gives 

 

𝜎𝑁
〈𝑁〉

= �1 − �1− �
𝜎𝑅
〈𝑅〉

�
2
�
3

                                                                                                            (S34)   

 

which may be evaluated as 

 

𝜎𝑁
〈𝑁〉

= �3
𝜎𝑅
〈𝑅〉

− 3 �
𝜎𝑅
〈𝑅〉

�
2

+ �
𝜎𝑅
〈𝑅〉

�
3

                                                                                              (S35)   

 
According to eqn S35, σR/〈R〉 = 0.20 corresponds to σN/〈N〉 = 0.70 and σR/〈R〉 = 0.25 corresponds 

to σN/〈N〉 = 0.75.  
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Calculations of the Surfactant Mole Fraction in Micelles 

The free surfactant concentration above cmc is expected to depend only on the composition in 

the aggregates, in so far inter-aggregate interactions are negligible. Accordingly, the concentra-

tion of free SOS (Surfactant 1) and CTAB (Surfactant 2), respectively, may be calculated by set-

ting c1free = γ1xcmc1 and c2free = γ2(1 – x)cmc2.  As a result, the concentration of surfactant present 

in self-assembled interfacial aggregates (cagg), as well as the aggregate mole fraction of SOS (x), 

may be calculated for a given total surfactant concentration ct = cagg + c1free + c2free and overall 

mole fraction of SOS  y = (c1free + xcagg)/ct, from given expressions for the activity coefficients as 

functions of x. The activity coefficients γ1 and γ2 were calculated from expressions derived in 15, 

i.e. 

 

𝛾1 = �𝑠 + �𝑠2 + 1�
2|2𝑥−1|/(2𝑥−1)

�
2𝑞
𝑠
�
2𝐽

exp �−2|2𝑥 − 1|𝑞 −
𝜇1
𝑘𝑇

− 4𝑝𝑞
1 − 𝑥

2𝑥 − 1
𝐽�        (S36) 

 

𝛾2 = �𝑠 + �𝑠2 + 1�
−2|2𝑥−1|/(2𝑥−1)

�
2𝑞
𝑠
�
2𝐽

exp �−2|2𝑥 − 1|𝑞 −
𝜇2
𝑘𝑇

+ 4𝑝𝑞
1 − 𝑥

2𝑥 − 1
𝐽�      (S37) 

 

where  

 

𝑠 ≡ |2𝑥 − 1|
2𝜋𝑙𝐵
𝑎𝜅

                                                                                                                               (S38) 

 

is the reduced charge density and 

 

𝑝 ≡
𝑠

√𝑠2 + 1
                                                                                                                                         (S39) 

𝑞 ≡
𝑠

√𝑠2 + 1 + 1
                                                                                                                                 (S40) 
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µ1 ≡ µ(x = 1) and µ2 ≡ µ(x = 0) are the molecular electrostatic free energies in pure solutions of 

Surfactant 1 (SOS) and Surfactant 2 (CTAB), respectively. The area per aggregated surfactant 

was set to a = 40 Å2 and the Bjerrum length lB equals about 7.15 Å and the Debye screening 

length 𝜅−1 = 3.04/�𝑐𝑒𝑙 Å for a 1:1 electrolyte in an aqueous medium at 25 °C. J ≡ aH/πlB is the 

dimensionless curvature and the mean curvature was roughly set to H = 0.05 Å−1 for samples 

with micelles. The choice of J is found to have a small and almost negligible influence on the cal-

culated aggregate compositions x. 

 

The critical micelle concentration of SOS is cmc1 = 133 mM and the critical micelle concentration 

of CTAB is cmc2 = 0.92 mM.16,17 Results from the calculations for investigated samples are tabu-

lated below. 

 

y ct /mM x cagg/mM c1free/mM c2free/mM 
0.05   40.0 0.051 39.125 1.6·10−6 0.875 
0.05   20.0 0.052 19.119 1.1·10−6 0.881 
0.05   10.0 0.055   9.114 0.8·10−6 0.886 

 
y ct /mM x cagg/mM c1free/mM c2free/mM 
0.10   40.0 0.102 39.203 9.6·10−6 0.797 
0.10   20.0 0.104 19.197 5.5·10−6 0.803 
0.10   10.0 0.109   9.191 3.7·10−6 0.809 

 
y ct /mM x cagg/mM c1free/mM c2free/mM 
0.15   40.0 0.153 39.303 3.6·10−5 0.697 
0.15   20.0 0.155 19.299 1.9·10−5 0.701 
0.15   10.0 0.161   9.296 1.2·10−5 0.704 

 
y ct /mM x cagg/mM c1free/mM c2free/mM 
0.20   40.0 0.203 39.422 1.1·10−4 0.578 
0.20   20.0 0.206 19.299 6.0·10−5 0.580 
0.20   10.0 0.212   9.422 3.6·10−5 0.704 

 
y ct /mM x cagg/mM c1free/mM c2free/mM 
0.25   40.0 0.253 39.552 3.4·10−4 0.448 
0.25   20.0 0.256 19.553 1.8·10−4 0.446 
0.25   10.0 0.262 9.558 1.0·10−4 0.442 

 

As a result of the low free monomer concentrations, we may conclude that the composition in 

the micelles x is fairly constant in the range of measured samples above ct = 10 mM. 
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