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1 Model and Methods

The starting point of our analysis is the Landau-de Gennes free energy for
a cholesteric liquid crystal (LC)1,2, which is built from the usual expansion
in the lowest order terms of the symmetric, traceless, tensor order parame-
ter Qij , split into elastic fe, and bulk terms fb, F =

∫
dV (fe + fb). Here

fe = 1
3+2κ (Qij,kQji,k + 4q0QilϵijkQkl,j + 4q20QijQji + κQij,jQki,k) and fb =

2
3τQijQji − 8

3QijQjkQki +
4
9 (QijQji)

2, where summation over repeated indices
is assumed. Our version uses dimensionless quantities and thus the free-energy
depends on only three parameters, τ , q0, and κ. τ is a reduced temperature
whose value determines the equilibrium bulk phase. While for a nematic τ = 1
is the coexistence temperature between the nematic and the isotropic phases,
for a cholesteric the coexistence temperature depends both on κ and the pitch
(see section 2). q0 ≡ 2π

P is the inverse of the pitch P . In this model the ne-
matic phase is described by the limit of infinite pitch P → ∞ or, equivalently,
the limit q0 → 0. All lengths are measured in units of the correlation length
ξ, which is the scale of the typical size of the topological defects and of the
width of the LC-isotropic interface (typically a few correlation lengths). As a
reference, for the nematic LC 5CB the correlation length at room temperature
is around 15nm so P = 1000ξ is equivalent to P = 15µm. The order in the
LC phase is described by a scalar order parameter S with values S = 0 in the
isotropic phase and S = Sb in the LC phase. For a nematic, at the coexistence
temperature, Sb = 1. For cholesterics, however, Sb depends weakly on κ and
P . κ ≡ L2

L1
, where L1 and L2 are the usual elastic constants of the Landau-de

Gennes theory. These do not show up explicitly in our free-energy because we
use a dimensionless version. The usual elastic constants of the Frank-Oseen
theory k1 (splay), k2 (twist), and k3 (bend) are related to Sb, L1, and L2 by
k1 = k3 = 9S2

b
2L1+L2

4 and k2 = 9S2
b
L1

2 . Notice that this simplest version of
the Landau-de Gennes theory only has two elastic constants and k1 = k3. Also
notice that κ = 0 is equivalent to L2 = 0 and k1 = k2 = k3, known as the
one-elastic-constant approximation.

We assume translational invariance along the z direction and thus calcu-
late the configuration on the xy plane. The Landau-de Gennes free energy is
minimized using the Finite Element Method with a relaxation scheme, through
the commercial program COMSOL 3.5a (http://www.comsol.com). The meshes
used are such that the precision of our numerical results is better than 1%. To
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ensure a good resolution of the interface we use a finer mesh of maximum size
ξ close to it.

To obtain the configurations shown in Fig. 1 of the paper we started with an
initial configuration of a bulk cholesteric that changes abruptly to an isotropic
phase perpendicular to the “layers”. The system is then allowed to evolve
towards the minimum of the free energy.

2 Results for the coexistence temperature, the
scalar order parameter, and the surface ten-
sion

To study interfacial phenomena we must be at the coexistence between the
two phases. This is defined as the temperature at which the two phases have
the same free-energy. Mathematically this is calculated by minimizing the free
energy. The local minima correspond to the stable or metastable phases and
we can identify the minima corresponding to the isotropic and the cholesteric
phases and calculate the temperature at which these phases have the same free
energy. Following the same method as Wright and Mermin 3 :

τc = 1− 3q2k −
1−

(
1 + 2q2k

)3/2
2

. (1)

where qk ≡ q√
3+2k

.

The equilibrium value of the scalar order parameter in the cholesteric phase
is S = A/4 + 3B/4, where A and B are

A = 1− q2k
2

−
1−

√
9− 8τ − 12q2k + 4q4k

4
, (2)

B2 =
9

8
− τ

2
+

(
3

8
+

q2k
12

)√
9− 8τ − 12q2k + 4q4k − q2k

2
− q4k

6
. (3)

To estimate the surface tension of a nematic-isotropic interface we use an
ansatz,4,5 where the LC has a fixed orientation relative to the interface (for
example, planar or perpendicular) and we allow a change in the scalar order
parameter S of the form:

S(y) =
1

2

[
tanh

(
y

y0

)
+ 1

]
(4)

which describes an interface parallel to the x-axis, at y = 0, and with width
y0. Using this ansatz in the Landau-de Gennes free energy and minimizing with
respect to y0 we obtain the scalar order parameter profile at the interface, an
example of which is represented in Fig. 1. By definition, the free-energy of this
profile is the surface tension. The result for the surface tension with planar
anchoring is

σ∥ =
1

6

√
6 + κ

3 + 2κ
(5)

and for hometropic (perpendicular) anchoring is

σ∥ =
1

6

√
2. (6)
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These are the results plotted in Fig. 2 of the paper (black lines). Numerically we
obtain the same values, within the accuracy of the method. If we do the same
calculation with other angles for the anchoring we conclude that the parallel and
the homeotropic anchorings are always the maximum and minimum interfacial
energies for a given value of κ. The minimum energy is obtained with parallel
anchoring for κ > 0 and with homeotropic anchoring for κ < 0. Thus, within
this simplest Landau-de Gennes theory it is not possible to obtain other values
for the anchoring, as discussed in the main paper.

For a cholesteric with the layers perpendicular to the interface the complex
distortions close to the interface make the definition of what is the interface and
the surface tension somewhat subtle. There can be two, apparently opposed,
points of view on what is the interface and how to calculate the surface tension.
Perhaps the most intuitive is: for P ≫ ξ the cholesteric-isotropic interface
is similar to the nematic-isotropic interface, including the value of the surface
tension. We used this reasoning to justify why the surface tension of a cholesteric
with planar alignment at the interface, as in Fig. 1, has the same value as the
nematic-isotropic surface tension. From this point of view the undulation of the
interface and the distortions of the cholesteric layers are not part of the interface
and should not be included in the calculation of the surface tension.

At the macroscopic scale the interface is effectively flat. Notice that the
amplitude of the undulations in Fig. 1 of the paper is a small fraction of the pitch.
For pitches on the micron scale the undulations of the interface are most likely
below the visible wavelengths and the interface will appear flat when observed
with an optical microscope. For example in Agez et al. 6 the undulations can
only be resolved with an AFM and are in a range between 20 and 100 nm.
From a thermodynamic, macroscopic, point of view the surface tension is the
free energy cost of increasing the area of an interface. This means that if we
double the area of the interface, we must double the number of distortions.
Hence, the energetic contributions of the undulations and of the distortions of
the cholesteric layers must be included in the free energy. They are an integral
part of the interface.

As we just discussed, the definition of the interface and the surface tension
depends on the length scale at which we look at the system. We are interested in
the thermodynamic surface tension and so we adopt the thermodynamic view.
To calculate the surface tension for given pitch P and κ we note that the free
energy is constructed such that at coexistence the free energy of the LC and
that of the isotropic phase are equal and correspond to the ground-state, and
thus the thermodynamic surface tension is simply the volume integral of the
free energy of the configuration that minimizes the free energy, such as those
shown on Fig. 1 of the paper.

As also discussed in the paper the value of κ at which the prefered anchoring
changes from homeotropic to parallel depends on the pitch. Fig. 2 plots the
phase diagram of the anchoring as a function of both the pitch and κ.

References

[1] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Claredon,
Oxford, 2nd edn, 1993.

3



0

20

40

60

80

100

120

00.51

S

p
it

ch

Isotropic

Figure 1: Cholesteric-isotropic interface with planar anchoring. The cholesteric
has a pitch P = 50ξ and the local orientation of the LC is given by the orienta-
tion of the cylinders and color coded from in-plane (blue) to out-of-plane (red).
Also plotted are the values of the scalar order parameter S (red dashed line)
and the out-of-plane orientation of the LC n2

z (black line) along the vertical
direction. The interface is identified by the abrupt change (a few correlation
lengths) in the value of S from Sb ≈ 1 to 0.
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Figure 2: Anchoring of a cholesteric at an interface with the isotropic phase.
For a nematic (infinite pitch) the boundary between planar and homeotropic
anchoring is at κ = 0. For a cholesteric the boundary shifts to κ > 0. For
P = 100ξ, κ = 2.1 and for P < 42 we could not find a value above which planar
anchoring is prefered.
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