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1. Details in fine structure of Methanosarcina cell wall 
 

 

The cell wall consists of three major components: cytoplasmic membrane, surface layer proteins (S-

layer) and heteropolysaccharide layer (matrix) 
1
. The cytoplasmic membrane appears in bilayer 

structure of hydroxylated diether lipids (3-hydroxyarchaeols) 
2, 3

, with a thickness of bilayer 4.5 nm  
1
. The S-layer is the outmost boundary of the cell envelop and can be considered as a protective, 

porous barrier 
4
, with an average thickness of the layer 10 12 nm  

5, 6
. This structure can be 

represented in a series of hexagonal tiles where the each particular tile consists of six complete C-

terminal dimers and halves of an additional six C-terminal dimers 
4
. Each particular tile connects 

with six surrounding tiles through the network of intermolecular interactions. These connections 

generate the extensive pore network with three different pore types with the pore size range 

 8 13 Å  
4
. The third component, the heteropolysaccharide matrix, has a thickness of 20 200 nm  

and is composed of fibrillar polymer methanochondroitin, which possess a molecular mass of about 

10 kDa  
7
. The matrix appears as loosely packed fibrils initially polymerized parallel to the S-layer 

8
. 

The range of matrix thickness values can be reduced to 60 100 nm  by excluding from 

consideration the degenerate methanohondroitin, where depolymerization leads to a decrease in 

matrix density, external spreading of fibrils and, finally, further depletion of the matrix thickness 
5, 

6
. Methanochondroitin consists of trisaccharide repeating unit of two N-acetylgalactosamines 

(GalNAc) and one glucuronic acid (GlcA). It is similar to eukaryotic chondroitin with respect to 

overall composition and structure 
9
. Eukaryotic chondroitin is in a semiflexible coil conformation of 

twofold helix polymer, with an intrinsic persistence length of 45 55 Å  
10-12

. Taking into account 

the similarities between methanochondroitin and chondroitin molecules both polymers should have 

similar conformational behavior. 

 

 

 

2. Derivation the growth eigenstrain rate equation 
 

 

The cell Θ  in reference configuration ξ  (see Fig.3 in the main text and section 3 in current 

Supplementary materials) has a density  0 det   F , where   is the density in actual 

configuration, with  det 0F . According to 
13-15

 the rate of 0  in reference configuration 

proportional to 1

0 : 
E GG : 

˙
1

0 0 0~ :  
E GG , where 0E  is the tensor that describe the absorption 

rate anisotropy; the upper dot corresponds to the material time derivative. Addition of the sink term 

to this equation results in the following: 
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˙

1

0 0 0 0  : :    δE GG E I ,   (S1) 

 

where 
δE  is the tensor that describe the desorption rate. The conservation of mass for 

methanochondroitin matrix can then be written as: 

 

  1

0 0 0 0div : :      p dξ
v E GG E I ,   (S2) 

 

where   is cell wall polymer concentration; v  is the flux rate of polymer filaments through the 

surface freeΩ  (methanochondroitin mechanical detachment towards the extracellular media as well 

as surface depolymerization), 
pE  is the tensor that describe the anisotropy in monosaccharaides 

polymerization rate inside the cell wall and dE  is the tensor that describe the depolymerization rate 

of methanochondroitin inside the cell wall. 

 

The cell wall material (see the section 2.2.1 in the main text for more details) can be characterized 

by chemical potential conf  which is a function of polymer concentration and confinement strength 

characterized by confinement size d :  conf conf , d   . conf  can be represented as an additive 

decomposition 
16

: 

 

   conf conf conf d     ,    (S3) 

 

where  conf   accounts for the concentration dependence of unconfined methanochondroitin 

solution and  conf d  accounts for the confinement dependence of isolated methanochondroitin 

filament. The relation between confining tube diameter d  and the free energy of such confinement 

is given as 1

confΨ cL 
17-19

, where   is the inverse of the thermal energy; c  is dimensionless 

prefactor; L  is the length of the tube;    is a deflection length, 
1/3 2/3

pl d  ; 
pl  is a persistence 

length of the polymer chain. Instead of d , another characteristic variable – the inverse of deflection 

length 1

*   may be used. During cell wall growth due to different 
pE  and dE  one can observe 

anisotropy in polymerization-depolymerization processes and hence in local density change. Such 

local density changes exert changes in polymer confinement and hence the changes in *  such that 

the higher polymerization rate inside the cell wall leads to a decrease in confined tube diameter ( 

and increase of * ). In this context, the rate of *  should be proportional to 
1

0 : 

pE GG  and 

0 : dE I . In general, one can assume that the rate of *  should follow the same dynamics as 0  , 

so the following relation can be considered: 

 
˙

*  ,   (S4) 

 

where   is some function which provide correct conformity between the phase space of polymer’s 

concentration and phase space of polymer’s confinement characteristic value.  

The balance of internal energy  has the following form: 



 

 
˙

0 confdivTS R    
ξ

m ,   (S5) 

 

where T  is a temperature; S  is entropy; 0m v . By taking into account the expression for the 

free energy Ψ TS  , the free energy of confined elastic shell can be represented as: 

 

 
˙

0 confΨ divR ST     
ξ

m .   (S6) 

 

Following the general idea about the representation of Ψ  as it was introduced in 
20

, the free energy 

of confined elastic shell is specified as  *Ψ Ψ ,   ,   ,  T  eF . The rate of Ψ  now reads: 

 
˙ ˙

*

*

Ψ Ψ Ψ Ψ
Ψ : T

T
 

 

   
   
   

e

e

F
F

.   (S7) 

 

Next, by recalling equations (6) and (7) (in the main text), (S1), (S2), (S4) and (S7) from (S6) one 

can obtain, after some transformation and neglecting the thermal terms, the dissipation inequality: 

 

   

     

* *

*

1

0 conf

conf

Ψ Ψ γ Ψ : Ψ γ Ψ div

Ψ 1 φ : Ψ γ Ψ Ψ : grad 0

   

 

   

    

              

                
P

e

T T

e p ξ

T

F d δ

F PG E E GG m

PG F E E I m
   (S8) 

 

Following the same way as it is described in details in 
13, 14

 (S8) can be reformulated, which now 

takes the form: 

 

  1

0 conf *Ψ ,  : 0         
T T

e pF PG E E GG ,   (S9) 

 

 confgrad 0 m , 

 

where  

 

     
*conf * conf conf *,  Ψ γ Ψ             ,   (S10) 

 

which follows from (S8). The dissipation inequality (S9) is similar to that reported in 
13-15

 but the 

differences, some of which are: a) the function   that defines the partial contribution of mechanical 

work to the cell wall growth and b) different definition for chemical potential conf , which is 

derived here in form (S10). 

 

According to 
13-15

, dissipation inequality like (S9) can be always satisfied if we apply the following 

condition: 

 

   1

0 conf *Ψ ,         T

pF P E E g ,   (S11) 

 



where     is a scalar function of  , g  is the growth eigenstrain rate. 

 

 

 

3. Geometry of aggregated cell 
 

 

The archaeal cell can be represented as a body Θ  embedded in the three dimensional space 3  

with intrinsic properties determined by the above. The model of 
3Θ  is represented in a 

curvilinear coordinate system    1,2   (see Fig. 3 in the main text). The cell wall is 

represented by a smooth surface 2

0Ω   where the each point has a neighborhood that is regularly 

parameterized by  , with   being two-dimensional Gaussian coordinates. Applying 3D space 

parametrization in the neighborhood of 0Ω  results in the following equation for a radius vector for 

any point in Θ  
21, 22

:      ,       R r n , where  r  is the parametrization of 0Ω  with 

unit-normal field  n ,   is the coordinate counted along the direction perpendicular to 0Ω , 

 / 2,  / 2h h   , h  is cell wall thickness. The initial position of 0Ω  opted relative to the top and 

bottom surfaces of the cell wall 
top,   botΩ , the radius vectors of which defined as 

top,   bot / 2h R r n

. The tangential vectors of 0Ω  which constitute the co-variant and contravariant bases on 0Ω  are 

given by 
21-23

 / 

   r r ,  

  r r ,  , 1,2   , where 

  is the Kronecker symbol. Note, 

that the following condition is satisfied 1 2 0 r r . The unit vector normal to 0Ω  defined 

3 1 2 1 2/  r r r r r . The metric tensor has a form g   r r , g   r r ,  , 1,2   . The 

curvature tensor k  of 0Ω  can be expressed through the following equation d d n k r , where 

d d 

 r r , d d 

 n n . 

 

Another curvilinear coordinate system    1,2   can also be considered, which characterizes 

the geometry of Θ  in the initial, reference, configuration (before any deformation). All necessary 

geometric relations based on   can be constructed in the same way as it was done above. 

 

Consider also the ratio /h b  at any point 0Ωp , here b  is local radius of curvature. Taking into 

account the observation data 
24-26

 for h and b, calculated maximum average values of 0.053  have 

been observed for this relation. Because of this h  can be considered as sufficiently small against 

other length scales of the cell, so it is reasonable to represent the cell as a confined thin elastic shell. 

 

 

 

4. Representative conformation of confined shell 
 

 

The natural processes of enzymatic, diffusion and protein oscillations of the cell 
27-30

 are the 

foundation of more complex cell processes that can be effectively represented by a stochastic 



approximation (refer to 
31, 32

 as for particular examples). Within such an approach, consider the cell 

state functional  *U R  of the cell geometry  , R , that itself depends on cell wall growth 

anisotropy, placement and rotation of division plane, changes in confinement state. Here we can 

apply the statistical mechanics approach and assume a finite number of theoretically possible states 

(with a proper values of  *U R ) which the cell can occupy. It is convenient to consider some 

distribution function describing the probability density of observing the cell Θi  in configuration 

 , |  i

tR  in the aggregate at the time t . In this context, the representative configuration is that 

more likely observed in aggregate at certain moment of time, in other words, the representative 

configuration rep|tR  corresponds to the cell state 
repU  with a highest probability value. 

 

Since the model for the cell has been determined as above, the configuration of the confined cell by 

means of conformation of surface 0Ω  is specified by  r . In this context,  U r  defines the 

mapping between the space conformation  r  of surface 0Ω  and potential energy U  of the cell. 

The well-known conformation partition function (for particular moment of time) for this case can be 

written:   D  expZ U  r r , where D r  indicates a functional integral over all possible space 

conformations  r  that describe the shape of the cell,   is inverse of the thermal energy. For the 

particular conformation   |mr  the following expression can be introduced: 

 exp |mmZ U     r . Thereby, the joint probability density of observing a cell in configuration 

  |mr  is the distribution: /m mP Z Z , normalized as  D   1P  r r . The representative 

conformation of shell (or configuration of cell) at the discrete time interval it  may now be 

determined as      rep| | : max  |
i i

m

t tPr r r . 

 

 

 

5. Principal directions of growth and growth anisotropy 
 

 

In order to validate the developed model, and overall theoretical approach to study the growth of 

aggregated cells, we use the reported elsewhere observations (see the introduction section for cited 

references) regarding division plane orientation and their alteration for both archaea and bacteria. 

Since our study, in general, and the models output, in particular, is focusing only on principal 

directions of cell wall growth but not on division plane positioning, we predict such principal 

growth directions based on reported information for division planes orientation and use this 

information for model validation. Such prediction is straightforward, according to reported studies 
33-37

, division plane positioned orthogonally to the longest axes of the cell and hence to the principal 

direction of cell wall growth (Fig. S2 (a)). 
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Fig. S2. Principal growth directions in spatially confined cells. 

Pink planes indicate a prospective division planes. Green arrows 

indicate principal growth directions. Black arrow indicates cells 

transformations due to growth. (a) Cell in conformation G1 stretching 

during growth and transforms to two cells in conformation G2. Cell in 

conformation G2 stretching during growth (in another direction) and 

transforms to two cells in conformation G3. This last geometry can 

either transform to weakly confined spherical cell - which constitutes 

the complete tetrad morphology; or transforms to a new conformation 

G1 - that constitutes the initiation of pseudoparenchyma morphology. 

(b) The results of simulated growth. The graphs show cells geometries 

at the initial moment of time and when cells volume is doubled. The 

arrows indicate principal growth directions. 
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Fig. S3. Anisotropy in growth potential density 

distribution preserves the principal growth 

directions observed on anisotropy maps. (a) 

Anisotropy map for G1 conformation, (b) for 

G2 conformation, (c) for G3 conformation. 

 

 

 

6. Calculations flow scheme of growth problem 
 



Growth of aggregated cell.

Evolution of cells geometry

Input

Initial cells geometry:

conformations G1, G2, G3

Closed and meshed

3D surface

Basic treatment of 3D geometry 

(cleaning, filtering, editing)
MeshLab

Numerical solution (finite element method) 

of the equilibrium problem, Eq. (1)-(4)
COMSOL

Yes

No

Numerical integration of

Eq.(12) using finite difference method

Self-writing code

In MatLab

Double volume

of a cell

No

Grown geometry

Define the new coordinates of every point 

in geometry mesh according to calculated 

stretches ratios

/Obtaining a new (grown) geometry/

Self-writing code

In MatLab

Yes

End

Start
Incremental time step 

 
 

Fig. S4. Calculations flow scheme of growth 

problem. 

Each incremental time step consists of following 

stages: 1) the problem starts with an initial 

geometry which is one of three representative 

conformations (Fig. 5); next 2) we mesh the 

geometry (using MeshLab v. 1.3.2.) and 3) start 

solving the equilibrium problem, Eq. (1)-(4), 

(using COMSOL Multiphysics 4.3a) which 

gives the stress field for confined shell; then 4) 

solve Eq. (12) which gives the growth induced 

strain field and the necessary stretches ratios 

(using a self-writing code in MatLab R2010b); 

next stage is 5) performing the necessary cells 

geometry changes using calculated stretches 

ratios (using a self-writing code in MatLab 

R2010b); after which 6) we check whether a 

cells volume is doubled, if yes – the calculations 

is stopped, otherwise the new incremental time 

step is initiated, the new (modified) geometry is 

used as an input.  
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