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Supplementary Information

Methods 

Large indentation of incompressible neo-Hookean material

Hertz equation has been widely used to determine the Young’s modulus of elastic 

materials when a semi-infinite half space of the materials is indented by an AFM probe.  Its 

derivation assumes the indentation to be small, i.e., β < 0.1, where β = δ/R, δ  is the indentation 

depth, and R is the tip radius of AFM probe. For analysis of very soft materials/tissues, the 

assumption may not be satisfied because the deformation has to be adequately large in order for 

the indentation force to be larger than the detection limit of AFM. To this end, we developed a 

new approach to determining the Young’s modulus of TM. It was modified from those described 

in the literature,1-4 where the indention of the semi-infinite half space was modeled as one-

dimensional (1-D) compression of a cylinder. For neo-Hookean materials, the normal Cauchy 

stress (σ) for compression was a nonlinear function of extension ratio (λ), 

𝜎 = 𝐵1(𝜆2 ‒ 𝜆 ‒ 1)                                                   (𝑆1)

where B1 is a material constant, , F is the indentation force on the AFM probe, and a is 𝜎 =‒ 𝐹 𝜋𝑎2

the cylinder radius that is assumed to be the same as the radius of contact area. Dimensional 

analysis for the indentation of semi-infinite half space yields, 
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where bi and ki (i = 1, 2, 3, ...) are constants.  It has been shown that (a/R)2 =  δ/R when a is 

much less than R.5 Thus, k1 = 1. Substituting Equations S2 and S3 into Equation S1, and 

neglecting the terms higher than the second order, we obtained,
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When , 𝛿/𝑅→0
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and Equations S2 should be consistent with the Hertz equation (i.e., Equation 1). As a result,

𝐵1𝑏1 =‒
4𝐸0

9𝜋(1 ‒ 𝜈2)
                                                   (𝑆6)

where E0 is the initial Young’s modulus of neo-Hookean materials and ν is the Poisson’s ratio. 
Substituting Equation S6 into Equation S4 yields,
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which is also called Equation 2 in the paper. 

Ocular tissues are neither homogeneous, nor semi-infinite in size. Thus, data analysis 

with Equation S7 (or Equation 2) could only provide the apparent initial Young’s modulus 

(E0)app. To determine the difference between (E0)app and E0, we performed numerical simulations 

of tissue indentation, i.e., in silico AFM experiment. Results from the simulation showed that the 

difference was negligible, compared to the variation in E0 within a TM. 

Numerical simulations of tissue indentation

We performed three-dimensional numerical simulations of tissue indentation with an 

AFM probe. In all simulations, ocular tissues were assumed to be neo-Hookean materials, whose 

strain energy density function W was given by,

𝑊 = 𝐶1(�̅�1 ‒ 3) + 𝐷1(𝐽 ‒ 1)2                                                                 (𝑆8)

where C1 and D1 are material constants,  is the determinant of the elastic deformation gradient, 𝐽

, and  is the first invariant of the left Cauchy-Green deformation tensor. The material �̅�1 = 𝐼1𝐽
‒

2
3 𝐼1

constant D1 is related the initial Young’s modulus and Poisson’s ratio by . 𝐷1 = 𝐸0/[6(1 ‒ 2𝜈)]

Tissue indentation in AFM experiments has been shown to be several orders of magnitude faster 

than water diffusion in the contact area.3 In this regard, tissues can be treated as incompressible 

materials, which requires ν to be 0.5. In the study, we assumed ν to be 0.4999 in all simulations. 
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The mathematical equations were solved numerically, using a finite element method (COMSOL 

software, version 4.4).

The simulations were divided into two groups. In the first one, indentation of a semi-

finite half space was investigated for the validation of Equation 2. The half space was modeled 

as a cubic block with size of H (see Figure S1); and the spherical tip of the AFM probe was 

place at the center of the top surface. Due to the geometric symmetries in the x- and y-directions, 

only a quarter of the block needs to be considered in the simulations. For given values of E0, H, 

and a set of values of indentation (δ), ranging from 0 to R/2, the indentation force (F) was solved 

as a function of δ/R. The simulated F vs. δ/R profiles were fitted with Equation 2 to obtain the 

value of (E0)app. The relative difference between E0 and (E0)app was used as a measure of error in 

the initial Young’s modulus determined by Equation 2. It was observed that R2 was 1.00 in all 

regression analyses, and that the error decreased with increasing H, the size of the cube (see 

Table S1). The error was independent of E0 since F was proportional to E0. The simulation 

converged when H > 150 µm. At H  = 175 µm, the error for the estimated E0 was 0.02%. 

Results from simulations in the second group were used to evaluate errors in the 

estimated E0, i.e., (E0)app, caused by structural heterogeneity in ocular tissues. As mentioned 

above, Equation 2 was derived for analysis of AFM indentation of a homogenous semi-finite 

half space, whereas ocular tissues consist of TM, cornea, sclera, and other structures. And each 

of them has finite dimensions. Additionally, the exact location of the borders between TM and 

surrounding tissues were unknown in our experiments. They could only be estimated, based on 

Evans blue and pigment distributions in tissues. To evaluate how the finite tissue size and the 

uncertainty in the TM location affected (E0)app, we developed a mathematical model to 

numerically simulate ocular tissue indentation. To simplify the model, we assumed that TM, 

cornea, and uveosclera were incompressible, isotropic, and homogeneous neo-Hookean materials 

with different initial Young’s moduli (E0). The model geometry was constructed based on the 

histology section of rat eyes (see Figure 3). The curvatures of SC and TM were neglected 

because they were significantly smaller than the dimensions of the cross sections of both SC and 

TM. As a result, all tissues in our model were assumed to be straight cylinders with different 

shapes of cross-sections. Figure S2 shows the cross-section through the center of the AFM tip. 

Due to the geometric symmetry in the y-direction, only half of the volume was considered in 
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numerical simulations. The half-width of the volume in the y-direction (i.e., the half-length of the 

cylinders) is L0; and other dimensions (i.e., H1, L1, and L2) of the volume are indicated in Figure 

S2. The volume size had insignificant effects on simulation results if each dimension was greater 

than 100 μm as indicated in our pilot simulations (data not shown). Thus, L0, H1, L1, and L2 were 

all assumed to be 100 μm. To derive boundary conditions, we assumed that the displacement of 

the bottom surfaces of both sclera and cornea (i.e., z = -100 μm) was zero. At other boundaries, 

the stresses were zero except at the area of contact between ocular tissue and the spherical tip of 

AFM probe, where continuous displacement and stresses were assumed. The total force exerted 

on the tip is F. The value of E0 was tissue-dependent, which was chosen to be 160 Pa, 2000 Pa, 

and 6200 Pa for TM, sclera, and cornea, respectively. They were approximately equal to the 

geometric means of the experimental data of (E0)app in Regions 1, 3, and 5, respectively (see 

Table 3). The simulations were repeated for indentation at different locations indicated by x0, i.e., 

the x coordinate of the center of the spherical tip, which varied from -40 to 140 μm. In addition 

to the F vs. δ/R profiles, we calculated three-dimensional distributions of the total displacement 

in tissues. 

To simulate effects of partial detachment of TM from the cornea on (E0)app, we modified 

the model geometry by cutting out a rectangular region in the cornea (see Figure S3). The 

dimensions of the region in x-, y-, and z-directions are 25 μm, 100 μm (i.e., L0), and 8 μm, 

respectively. The procedure of the simulation was the same as that for the intact TM. The 

simulated F vs. δ/R profiles were fitted with Equation 2 to determine the apparent Young’s 

modulus of the partial detached TM, (E0)det.
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Table S1: Comparison of  E0 and (E0)app for Simulated Indentation of a Uniform Cube †

Cube height, H (µm) (E0)app /E0 Percent difference

25 1.0994 9.94%

50 1.0406 4.06%

75 1.0212 2.12%

100 1.0119 1.18%

125 1.0055 0.54%

150 1.0022 0.22%

175 0.9998 0.02%

200 1.0004 0.04%

† Indentation of a uniform cube was simulated numerically. For given values of E0 and H, 

the indentation force (F) was simulated as a function of δ/R, where δ is the indentation 

and R is the tip radius of AFM probe. The simulated F vs. δ/R curves were fitted with 

Equation 2 to yield the values of apparent initial Young’s modulus, (E0)app. The ratio 

and percent difference between E0 and (E0)app were independent of E0 when its value 

was varied from 100 to 7000 Pa.
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Figure legend

Figure S1. Indentation of a semi-finite half space. The half space was modeled as a cubic block 
of neo-Hookean material. The indentation occurred at the center of the top surface. 
The tip size of AFM probe and the indentation force (F) are indicated in the figure. 
The size H varied from 25 to 200 µm in the simulations.   

Figure S2. Schematic of the model geometry for numerical simulations of ocular tissue 
indentation. TM, uveosclera, and cornea were modeled as cylindered with different 
shapes of cross-sections. The tip of AFM probe was spherical. The x- and z-axes are 
shown in the figure, and the y-axis is in the direction determined by the right-hand 
rule. The indentation of ocular tissues was caused by a force (F) exerted on the tip of 
AFM probe; and the tissue deformation was symmetric about the plane of y = 0. All 
dimensions in the x- and z-directions are indicated in the figure. The half-width of the 
volume in the y-direction (i.e., the half-length of the cylinders) was L0. 

Figure S3. Schematic of the model geometry for numerical simulations of indentation of ocular 
tissues with partial detachment of the TM. It is the same as the geometry shown in 
Figure S2, except that a rectangular region of the cornea was removed to model the 
partial detachment of the TM. The dimensions of the region in x- and z-directions are 
shown in the figure. In the y-direction, it is L0.
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Figure S1
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Figure S2
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Figure S3


