Supplementary Material for Soft Matter

Polymer conformations in polymer nanocomposites containing spherical nanoparticles

Argyrios Karatrantos,¹ Russell J. Composto,² Karen I. Winey,² and Nigel Clarke¹

¹ Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom ² Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA

FIG. S1: Mean square internal distances for nanocomposites containing attractive nanoparticles (R = 1) for N = 20. Data corresponding to the different volume fraction ϕ are indicated in the legend.

FIG. S2: Mean square internal distances for nanocomposites containing attractive nanoparticles (R = 1) for N = 100. Data corresponding to the different volume fraction ϕ are indicated in the legend.

FIG. S3: Mean square internal distances for nanocomposites containing attractive nanoparticles (R = 1) for N = 200. Data corresponding to the different volume fraction ϕ are indicated in the legend.

FIG. S4: Mean square internal distances for nanocomposites containing repulsive nanoparticles (R = 1) for N = 200. Data corresponding to the different volume fraction ϕ are indicated in the legend.

FIG. S5: Mean square displacement of attractive nanoparticles of radius R = 2 in nanocomposites with entangled polymers N = 200. Data corresponding to the different volume fraction ϕ are indicated in the legend.