Supplementary Information:

"Gas bubble dynamics in soft materials"

J. M. Solano-Altamirano, $^{\rm a)}$ John D. Malcolm, $^{\rm b)}$ and Saul Goldman $^{\rm c)}$

Dept. of Chemistry, the Guelph-Waterloo Centre for Graduate Work in Chemistry and the Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

(Dated: 5 November 2014)

Supp. Info. Abstract: Here we provide tables of numerical values of dissolving times for a bubble embedded in an soft elastic medium. These values are intended to serve as benchmarks for those readers who may want to check their work against ours.

I. $(\partial c/\partial r)_R$ FROM THE DIFFUSION EQUATION

The dissolving time for a bubble embedded in an elastic medium is found by numerically solving the differential equation

$$\frac{dR}{ds} = \frac{6BTD^*(P_{WSR} - P_e + 4G/3 - 2\gamma/R)}{(3P_eR + 4\gamma - 4GR)K_H} \left\{ s + \frac{R}{\sqrt{\pi D^*}} \right\},\tag{1}$$

which is obtained by combining Eqs. (10), (14), and (15) from the main article, together with the change of variable

$$t = s^2. (2)$$

This change of variable eliminates the singularity at t = 0 (see Section 3 of the main article).

A tabulated series of dissolving times for different combinations of the shear modulus G, and initial radius R_0 is given in Table I.

^{a)}Electronic mail: jmsolanoalt@gmail.com

^{b)}Electronic mail: malcolmj@uoguelph.ca

^{c)}Electronic mail: sgoldman@uoguelph.ca

		$t_d(R_0, G) \times \sec^{-1}$					
		$((\partial c/\partial r)_R$ from the Diffusion equation.)					
$R_0 \times \mu^-$	-1	G = 0.0atm	G = 0.1atm	G = 0.2atm	G = 0.3atm		
5		0.4741	0.5365	0.6483	0.9195		
10		2.477	3.119	4.808	∞		
15		6.337	8.546	16.38	∞		
20		12.16	17.21	40.19	∞		
25		20.01	29.33	82.27	∞		
30		29.9	45.04	150.3	∞		

TABLE I. Dissolving times obtained numerically from Eq. (1). Here we have used $T = 298.15 \ K$, $P_e = 1 \ \text{atm}, P_{WSR} = 0.75 \ \text{atm}, D^* = 2900 \ \mu^2/\text{sec}, \ \gamma = 0.7 \ \mu \cdot \text{atm} \ (70 \ \text{dynes/cm}), \ B = 0.082057 \ \text{atm} \cdot 1 \cdot \text{mol}^{-1} \cdot K^{-1}, \ \text{and} \ K_H = 1614 \ \text{atm} \cdot 1 \cdot \text{mol}^{-1}.$

II. $(\partial c/\partial r)_R$ FROM THE LAPLACE EQUATION

The time evolution of a bubble embedded in a soft elastic material, using $(\partial c/\partial r)_R$ obtained from the Laplace equation (Eq. (17) in the main paper), is given by

$$t = \frac{1-\alpha}{2D^*d(1-f-\alpha)}(R_0^2 - R^2) - \frac{2\gamma(2f+1-\alpha)}{3D^*d(1-f-\alpha)^2P_e}(R_0 - R) + \frac{4\gamma^2(2f+1-\alpha)}{3D^*d(1-f-\alpha)^3P_e^2}\ln\left(\frac{(1-f-\alpha)R_0P_e + 2\gamma}{(1-f-\alpha)RP_e + 2\gamma}\right),$$
(3)

where

$$d \equiv \frac{BT}{K_H}, \qquad f \equiv \frac{P_{WSR}}{P_e}, \qquad \text{and} \qquad \alpha \equiv \frac{4G}{3P_e}$$
(4)

Equation (3) has physical units and is equivalent to Eq. (26) of the main paper.

The dissolving times shown in Table II were obtained from:

$$t_{d} = \frac{1-\alpha}{2D^{*}d(1-f-\alpha)}R_{0}^{2} - \frac{2\gamma(2f+1-\alpha)}{3D^{*}d(1-f-\alpha)^{2}P_{e}}R_{0} + \frac{4\gamma^{2}(2f+1-\alpha)}{3D^{*}d(1-f-\alpha)^{3}P_{e}^{2}}\ln\left(\frac{(1-f-\alpha)R_{0}P_{e}+2\gamma}{2\gamma}\right),$$
(5)

which was obtained from Eq. (3) with R set equal to 0.

		$t_d(R_0,G) \times \sec^{-1}$						
		$\left((\partial c / \partial r)_R \text{ from the Laplace equation.} \right)$						
1	$R_0(\mu)$	G = 0.0atm	G = 0.1atm	G = 0.2atm	G = 0.3atm			
	5	0.5316	0.5982	0.7172	1.004			
	10	2.74	3.417	5.189	∞			
	15	6.965	9.286	17.44	∞			
	20	13.32	18.61	42.42	∞			
	25	21.86	31.6	86.27	∞			
	30	32.61	48.42	156.8	∞			

TABLE II. Dissolving times obtained from Eq. (5). Here we have used $T = 298.15 \ K, P_e = 1 \ \text{atm}, P_{WSR} = 0.75 \ \text{atm}, D^* = 2900 \ \mu^2/\text{sec}, \ \gamma = 0.7 \ \mu \cdot \text{atm} \ (70 \ \text{dynes/cm}), \ B = 0.082057 \ \text{atm} \cdot \text{l} \cdot \text{mol}^{-1} \cdot K^{-1}, \ \text{and} \ K_H = 1614 \ \text{atm} \cdot \text{l} \cdot \text{mol}^{-1}.$