Supplementary Information:

"Gas bubble dynamics in soft materials"

J. M. Solano-Altamirano Ja John D. Malcolm and Saul Goldman ${ }^{(\mathrm{c})}$

Dept. of Chemistry, the Guelph-Waterloo Centre for Graduate Work in Chemistry and
the Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
(Dated: 5 November 2014)
Supp. Info. Abstract: Here we provide tables of numerical values of dissolving times for a bubble embedded in an soft elastic medium. These values are intended to serve as benchmarks for those readers who may want to check their work against ours.

I. $(\partial c / \partial r)_{R}$ FROM THE DIFFUSION EQUATION

The dissolving time for a bubble embedded in an elastic medium is found by numerically solving the differential equation

$$
\begin{equation*}
\frac{d R}{d s}=\frac{6 B T D^{*}\left(P_{W S R}-P_{e}+4 G / 3-2 \gamma / R\right)}{\left(3 P_{e} R+4 \gamma-4 G R\right) K_{H}}\left\{s+\frac{R}{\sqrt{\pi D^{*}}}\right\} \tag{1}
\end{equation*}
$$

which is obtained by combining Eqs. (10), (14), and (15) from the main article, together with the change of variable

$$
\begin{equation*}
t=s^{2} \tag{2}
\end{equation*}
$$

This change of variable eliminates the singularity at $t=0$ (see Section 3 of the main article).
A tabulated series of dissolving times for different combinations of the shear modulus G, and initial radius R_{0} is given in Table \uparrow.

[^0]| | $t_{d}\left(R_{0}, G\right) \times \mathrm{sec}^{-1}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| | $\left((\partial c / \partial r)_{R}\right.$ from the Diffusion equation.) | | | |
| $R_{0} \times \mu^{-1}$ | $G=0.0 \mathrm{~atm}$ | $G=0.1 \mathrm{~atm}$ | $G=0.2 \mathrm{~atm}$ | $G=0.3 \mathrm{~atm}$ |
| 5 | 0.4741 | 0.5365 | 0.6483 | 0.9195 |
| 10 | 2.477 | 3.119 | 4.808 | ∞ |
| 15 | 6.337 | 8.546 | 16.38 | ∞ |
| 20 | 12.16 | 17.21 | 40.19 | ∞ |
| 25 | 20.01 | 29.33 | 82.27 | ∞ |
| 30 | 29.9 | 45.04 | 150.3 | ∞ |

TABLE I. Dissolving times obtained numerically from Eq. (11). Here we have used $T=298.15 \mathrm{~K}$, $P_{e}=1 \mathrm{~atm}, P_{W S R}=0.75 \mathrm{~atm}, D^{*}=2900 \mu^{2} / \mathrm{sec}, \gamma=0.7 \mu \cdot \mathrm{~atm}(70$ dynes $/ \mathrm{cm}), B=0.082057$ $\mathrm{atm} \cdot \mathrm{l} \cdot \mathrm{mol}^{-1} \cdot K^{-1}$, and $K_{H}=1614 \mathrm{~atm} \cdot l \cdot \mathrm{~mol}^{-1}$.

II. $(\partial c / \partial r)_{R}$ FROM THE LAPLACE EQUATION

The time evolution of a bubble embedded in a soft elastic material, using $(\partial c / \partial r)_{R}$ obtained from the Laplace equation (Eq. (17) in the main paper), is given by

$$
\begin{align*}
t= & \frac{1-\alpha}{2 D^{*} d(1-f-\alpha)}\left(R_{0}^{2}-R^{2}\right)-\frac{2 \gamma(2 f+1-\alpha)}{3 D^{*} d(1-f-\alpha)^{2} P_{e}}\left(R_{0}-R\right) \\
& +\frac{4 \gamma^{2}(2 f+1-\alpha)}{3 D^{*} d(1-f-\alpha)^{3} P_{e}^{2}} \ln \left(\frac{(1-f-\alpha) R_{0} P_{e}+2 \gamma}{(1-f-\alpha) R P_{e}+2 \gamma}\right) \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
d \equiv \frac{B T}{K_{H}}, \quad f \equiv \frac{P_{W S R}}{P_{e}}, \quad \text { and } \quad \alpha \equiv \frac{4 G}{3 P_{e}} \tag{4}
\end{equation*}
$$

Equation (3) has physical units and is equivalent to Eq. (26) of the main paper.
The dissolving times shown in Table II were obtained from:

$$
\begin{align*}
t_{d}= & \frac{1-\alpha}{2 D^{*} d(1-f-\alpha)} R_{0}^{2}-\frac{2 \gamma(2 f+1-\alpha)}{3 D^{*} d(1-f-\alpha)^{2} P_{e}} R_{0} \\
& +\frac{4 \gamma^{2}(2 f+1-\alpha)}{3 D^{*} d(1-f-\alpha)^{3} P_{e}^{2}} \ln \left(\frac{(1-f-\alpha) R_{0} P_{e}+2 \gamma}{2 \gamma}\right), \tag{5}
\end{align*}
$$

which was obtained from Eq. (3) with R set equal to 0 .

	$t_{d}\left(R_{0}, G\right) \times \mathrm{sec}^{-1}$			
	$\left((\partial c / \partial r)_{R}\right.$ from the Laplace equation.)			
$R_{0}(\mu)$	$G=0.0 \mathrm{~atm}$	$G=0.1 \mathrm{~atm}$	$G=0.2 \mathrm{~atm}$	$G=0.3 \mathrm{~atm}$
5	0.5316	0.5982	0.7172	1.004
10	2.74	3.417	5.189	∞
15	6.965	9.286	17.44	∞
20	13.32	18.61	42.42	∞
25	21.86	31.6	86.27	∞
30	32.61	48.42	156.8	∞

TABLE II. Dissolving times obtained from Eq. (5). Here we have used $T=298.15 K, P_{e}=$ $1 \mathrm{~atm}, P_{W S R}=0.75 \mathrm{~atm}, D^{*}=2900 \mu^{2} / \mathrm{sec}, \gamma=0.7 \mu \cdot \mathrm{~atm}(70$ dynes $/ \mathrm{cm}), B=0.082057$ $\mathrm{atm} \cdot \mathrm{l} \cdot \mathrm{mol}^{-1} \cdot K^{-1}$, and $K_{H}=1614 \mathrm{~atm} \cdot \mathrm{l} \cdot \mathrm{mol}^{-1}$.

[^0]: ${ }^{\text {a) }}$ Electronic mail: jmsolanoalt@gmail.com
 ${ }^{\text {b) }}$ Electronic mail: malcolmj@uoguelph.ca
 ${ }^{\text {c) }}$ Electronic mail: sgoldman@uoguelph.ca

