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A. Modified real spherical harmonics

To obtain a suitable basis set for expanding real orientational distributions in our mean

field model, we start from the definition of the complex spherical harmonics using the

Condon-Shortley normalization [D. M. Brink and G. M. Satchler, Angular Momentum Ox-

ford University Press, 1968 ]
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Rm
l (ω̂) =


C0

l (ω̂) m = 0

1
2

√
2 {Cm

l (ω̂) + Cm
l (ω̂)∗} m > 0

1
2i

√
2
{
C
|m|
l (ω̂)− C |m|l (ω̂)∗

}
m < 0

(2)

The orthogonality relations for these functions are simply∫
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and the harmonic addition theorem becomes
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Parametrizing the unit sphere with the standard spherical angles,

ω̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), we list these functions for l,m even, up to l = 4
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The standard second rank order parameter tensor Q can then be expressed in terms of

the functions as
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B. Minimization procedure of the free energy

To obtain the orientational distribution function that minimizes the free energy functional

introduced in the main text we consider the stationarity equation

δ

δψ (ω̂)
Φ [ψ] = βµ, (15)

where the chemical potential µ serves as a Lagrange multiplier enforcing the normalization

of the ODF. Explicitly the stationarity equation becomes
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We now note that the excluded volume interaction term is symmetric under the inversion

of the direction of the particles, as well as all the additional terms, so in the expansion of

the ODF
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we can ignore terms with l odd. Moreover, because of its global rotational invariance the

excluded volume term is agnostic about the value of m, and the additional terms only couple

to even values of m so without loss of generality we can also restrict ourselves to m even. For

numerical purposes, rather than working with the expansion Eq. (17), it is more convenient
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to work with a cumulant representation
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where l∗ is a cut-off and the primes denote restriction to even values in the summations and

the normalization is simply
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Note that this representation guarantees positivity of the ODF, and requires far fewer terms

to describe strongly peaked distributions. Inserting into the stationarity equation Eq. (16)

and projecting out the coefficient using the orthogonality relations Eq. (3), we find

4π

2l + 1
clm + η

∫
dω̂Rm

l (ω̂)

∫
dω̂′ sin γ (ω̂, ω̂′)ψ (ω̂′) +

4π

2l + 1
ξ‖δl,2δm,0 +

4π

2l + 1
ξ⊥δl,4δm,4+

4π

2l + 1
ξdδl,2δm,2

〈R2
2〉√

〈R2
2〉

2
+
〈
R−22

〉2+

4π

2l + 1
ξdδl,2δm,−2

〈
R−22

〉√
〈R2

2〉
2

+
〈
R−22

〉2 = 0 (20)

We can expand

sin γ (ω̂, ω̂′) =

∞∑′

l=0

slR
0
l (ω̂, ω̂′) (21)

where following Kayser and Raveché [Phys. Rev. A 17, 2067–2072 (1978), see also Grad-

shteyn & Ryzhik, Table of Integrals, Series, and Products, Academic Press, entry 7.132]
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so that
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We now note that (see Eq. (4))∫
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so that for l ≥ 2

clm + ηsl 〈Rm
l 〉+ ξ‖δl,2δm,0 − ξ⊥δl,4δm,4

+ ξd

δl,2δm,2
〈R2

2〉√
〈R2

2〉
2

+
〈
R−22

〉2 + δl,2δm,−2

〈
R−22

〉√
〈R2

2〉
2

+
〈
R−22

〉2
 = 0 (26)

We can determine fairly accurate solutions to this functional equation by making a cu-

mulant expansion of ψ (ω̂) in terms of real spherical harmonics up to rank l = 4.
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