Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2014

### **Supporting Information for:**

#### On the Icephobic Performance of Alkyl-Grafted Aluminum Surfaces

S.A. Kulinich<sup>a,b,\*</sup>, M. Honda<sup>a</sup>, A.L. Zhu<sup>c</sup>, A.G. Rozhin<sup>b</sup>, X.W. Du<sup>d</sup>

<sup>a</sup> Institute of Innovative Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan

<sup>b</sup> School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK

<sup>c</sup> Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

<sup>d</sup> School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

### Surface Images of As-Prepared SA- and ODTMS-treated Samples



Figure S1. SEM surface images of as-prepared SA-treated (left) and ODTMS-treated (right) AA2024 samples. Bigger irregular (Al-Cu-Fe-Mn) and smaller regular-sized (Al-Cu-Mg) intermetallic particles are seen to have very smooth boundaries with the Al matrix, implying good surface protection by the thin layers and no signs of corrosion. Scale-bars indicate 2  $\mu$ m.

# Surface Images of Iced / Deiced SA- and ODTMS-treated Samples



Figure S2. SEM surface images of SA-treated (left) and ODTMS-treated (right) AA2024 samples after 33 icing/de-icing events. Bigger irregular (Al-Cu-Fe-Mn, left) and smaller regular-sized (Al-Cu-Mg, right) intermetallic particles are seen to have signs of corrosion and trenches at the boundaries with the Al matrix. Scale-bars indicate 2  $\mu$ m.

# Surface Images of As-Prepared Two-Layer Coatings



Figure S3. SEM images of as prepared AA2024 surfaces coated with TEOS/FAS (left), BTSE/ FAS (center) and PCC/FAS (right). No signs of corrosion are seen between intermetallic particles and the Al matrix, inserts present Al-Cu-Mg second-phase particles. Scale-bars indicate 1 µm.



Shear Stress of Ice Detachment on Two-Layer Coatings

Figure S4. Shear stress of ice detachment as a function of the number of icing/deicing tests on the TEOS/FAS (left), BTSE/FAS (center) and PCC/FAS (right) coatings.

# Evolution of Wetting Hysteresis on One-Layer Coatings with the Number of Icing/Deicing Tests



Figure S5. Contact angle (open triangles) and contact angle hysteresis (solid triangles) measured on the surface of ODTMS-coated sample as it was subjected to repeated icing/deicing events.



Figure S6. Contact angle hysteresis measured on the surface of FAS (squares) and SA-coated (diamonds) samples as they were subjected to repeated icing/deicing events.

# Surface Composition of As-Prepared and Iced/Deiced ODTMS-Treated Samples

Table S1. Measurements of atomic composition (in at. %) by XPS for the AA2024 surface coated with ODTMS before and after 33 icing/deicing treatments. Only major metal elements are presented. The uncertainties were estimated to be about  $\pm 0.5\%$ .

| Element | As-prepared surface | After 34 icing/deicing cycles |
|---------|---------------------|-------------------------------|
| Si      | 10.5                | 6.8                           |
| Al      | 87.1                | 90.9                          |
| Mg      | 2.2                 | 2.0                           |
| Mn      | 0.2                 | 0.3                           |