Supplementary Information

Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate)

Sa Hoon Min,^a Sang Kyu Kwak*^b and Byeong-Su Kim*^{ac}

- ^a Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
- ^b Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea. E-mail: skkwak@unist.ac.kr
- ^c Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea. E-mail: bskim19@unist.ac.kr

The potential energy components of PCFF force-field¹ can be defined as follows:

$$\begin{split} E_{total} &= \sum_{bond \ b} \left[k_2 (b - b_0)^2 + k_3 (b - b_0)^3 + k_4 (b - b_0)^4 \right] \\ &+ \sum_{angle \ \theta} \left[k_2 (\theta - \theta_0)^2 + k_3 (\theta - \theta_0)^3 + k_4 (\theta - \theta_0)^4 \right] \\ &+ \sum_{torston \ \phi} \left[k_1 (1 - \cos \phi) + k_2 (1 - \cos 2\phi) + k_3 (1 - \cos 3\phi) \right] + \sum_{inversion \ \chi} K_{\chi} \chi^2 \\ &+ \sum_{bond \ b} \sum_{bond \ b'} K_{bb'} (b - b_0) (b' - b'_0) + \sum_{angle \ \theta} \sum_{angle \ \theta'} K_{\theta\theta'} (\theta - \theta_0) (\theta' - \theta'_0) \\ &+ \sum_{bond \ bangle \ \theta} K_{b\theta} (b - b_0) (\theta - \theta_0) + \sum_{bond \ btorston \ \phi} (b - b_0) (V_1 \cos \phi + V_2 \cos 2\phi + V_3 \cos 3\phi) \\ &+ \sum_{angle \ \theta torston \ \phi} (b' - b'_0) (V_1 \cos \phi + V_2 \cos 2\phi + V_3 \cos 3\phi) \\ &+ \sum_{angle \ \theta torston \ \phi} (\theta - \theta_0) (V_1 \cos \phi + V_2 \cos 2\phi + V_3 \cos 3\phi) \\ &+ \sum_{torston \ \phi angle \ \theta torston \ \phi} K_{\phi\theta\theta'} \cos \phi (\theta - \theta_0) (\theta' - \theta'_0) + \sum_{i>j} \frac{q_i q_j}{cr_{ij}} + \sum_{i>j} \left[\frac{A_{ij}}{r_{ij}^6} - \frac{B_{ij}}{r_{ij}^6} \right] \end{split}$$

where the first four components denote the valence interaction, such as bond, angle, torsion, and inversion energy term, the next seven components represent the valence cross-terms, and the last two components are the Coulombic and van der Walls interaction, respectively.

(S1) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. J. Am. Chem. Soc. 1994, 116, 2978–2987.

Figure S1. Average temperature of (a) PDMAEMA and (b) water molecules during the production run.

Figure S2. (a) Equilibrium morphologies of PDMAEMA and (b) time evolution of the radius of gyration for PDMAEMA at 283, 303, and 338 K from the last configuration of the 303 K production run.

Figure S3. Time series of the intramolecular pairwise energy of PDMAEMA at 338 K in the extension of the production run.

Figure S4. Time evolution of the total system energies at 283, 303, and 338 K.