Electronic Supplementary Information (ESI)

Structural effects of the dispersing agent Polysorbate 80 on liquid crystalline nanoparticles of soy phosphatidylcholine and glycerol dioleate

Maria Wadsäter,^{*a*} Justas Barauskas ^{*b,c*} Sarah Rogers,^{*d*} Maximilian W. A. Skoda,^{*d*} Robert K. Thomas,^{*e*} Fredrik Tiberg,^{*a,b*} and Tommy Nylander^{**a*}

^{*a*} Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100, Lund, Sweden

^b Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden.

^c Biomedical Science, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden.

^{*d*} ISIS, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom.

^e Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom.

Figure ESI:1. Size distribution of 50/50 SPC/GDO nanoparticles dispersed by 5 (red), 10 (blue) or 15 (green) % dP80 measured by dynamic light scattering at 25 $^{\circ}$ C.

The polydispersity (PD) of the nanoparticle cores was defined in the Sasview software as

$$PD = \frac{\sigma}{x_{mean}}$$

where x_{mean} and σ are the averaged core size and its standard deviation, respectively. σ and x_{mean} were also calculated by fitting a Gaussian function

$$f(x) = \frac{1}{Norm}e^{-\frac{(x - x_{mean})^2}{2\sigma^2}}$$

to the size distribution curves measured by DLS (Figure ESI:1). Estimated values of PD was then calculated to be 0.20 for the nanoparticles dispersed by 5 % d-P80 and 0.24 for the 10 and 15 % d-P80 nanoparticles. These are similar to the fitted values of the core polydispersity.

Table ESI 1. The theoretical effect of increasing the fraction of d-P80 and solvent in the lipid matrix and the SPC/GDO ratio on the SLD of the nanoparticle core. The SLD was calculated varying a single parameter at the time and using 0 % d-P80, 12 % solvent¹ and 50/50 SPC/GDO as standard. The effect of d-P80 was considered assuming a homogenous distribution of the d-P80, used to disperse the sample, throughout the whole particle.

	d-P80 (%)				Solvent (%)			SPC/GDO		
	0	5	10	15	5	10	15	50/50	25/75	0/100
SLD of core H2O	0.11	0.27	0.44	0.60	0.16	0.12	0.09	0.11	0.09	0.08
SLD of core 1:4 H2O:D2O	0.77	0.94	1.10	1.27	0.44	0.68	0.92	0.77	0.76	0.75

1. Tiberg, F.; Johnsson, M.; Jankunec, J.; Barauskas, J., *Chem. Lett.* **2012**, *41*, 1090-1092.