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S1. ACTIVE CONFORMATIONAL SWITCHING OF MEMBRANE PROTEINS

The central focus of this paper is on the active dynamics of fission and fusion of trans-
port vesicles. The fusion process involves two steps: (a) attachment of curvature sensing
proteins (v-SNARE complex) to pre-packaged transport carrier, and (b) engagement of this
protein-vesicle complex with the t-SNARE complex in the organelle.

However, our simulations can be readily extended to study active processes arising from
the switching of membrane bound pumps from their active to inactive forms. This is
schematically shown in Fig. S1 for a sodium ion pump, which induces local membrane cur-
vature when it goes from an closed state (left panel) to an open state (right panel) [1–3].
In our Monte Carlo simulations, this active curvature changes are modeled by switching the
variable φi at i in a non-equilibrium way, as φ� −φ, and by assigning a local spontaneous
curvature of the form H0i = C0φ

2
i (1 + φi)/2.

  closed state

ION
PUMP

flat membrane
Na+  ions

open state

curved membrane

FIG. S1. A membrane driven out of equilibrium by the active conformational switching of

membrane bound pumps from their closed to open forms.
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S2. DYNAMICAL TRIANGULATION MONTE CARLO

We study the steady state shapes of the active fluid membrane using a Dynamical Trian-
gulation Monte Carlo (DTMC) simulation. We represent the membrane as a triangulated
closed surface of spherical topology, as illustrated in Fig. S2(a).

d (� nm)

{X⃗} → {X⃗
′}

{T } → {T
′}

Pacc = min [1, exp(−β∆Hel)]

Pacc = min [1, exp(−β∆Hel)]

(i) Vertex move

(ii) Link flip

(a) (b)

(c)

FIG. S2. (a) The closed membrane is represented by a triangulated surface, constructed by

connecting hard spheres of radius a0, as highlighted. (b) Each triangle of the triangulated surface

represents a coarse-grained patch of the bilayer membrane, with area ∼ 4a20. (c) DTMC moves

involved in equilibrium simulations of a fluid membrane, with (i) ‘vertex moves’ referring to changes

in vertex position { ~X} in the 3d embedding space that alter membrane shape, and (ii) ‘link flips’

refer to dynamical triangulation of the surface, and leads to membrane fluidity and hence particle

diffusion on the membrane.

A triangulated surface consists of T interconnected triangles (faces) intersecting at N
vertices (nodes) - each node is represented by a hard sphere of size a0 as shown for few vertices

in Fig. S2(a). The position vectors of the N vertices are { ~X} = [~x1 . . . ~xN ] and {T } =
[T1 . . .TT ] denotes the triangulation map. The triangles further define L independent links
(edges). The number of faces, nodes and edges together define the topology of the surface
as,

χ = N + T − L, (1)
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where the Euler characteristic χ = 2 for spherical topology. In the discrete representation,
each of the triangles of the triangulated surface in Fig. S2(b), represents a flat region of
length 2a0. The value of a0 sets the scale of discretization of all lengths and curvature
measures. Here, the length scale a0 can be thought of as the size of a typical transport
carrier, ∼ 50− 100nm.

The equilibrium properties of the dynamically triangulated surface is computed by ana-
lyzing the partition function, Z(N, κ,∆p0), where κ and ∆p0, the bending rigidity and the
osmotic pressure, are parameters that enter the membrane Hamiltonian Hel (Eq. 1 in the
main text). The partition function can be schematically written as,

Z(N, κ,∆p0) = Tr exp
{
−βHel

[
{ ~X}, {T }

]}
(2)

where the Trace is over all possible triangulations {T } and vertex positions ~X, subject to
constraints that force the vertices to lie on a closed surface of fixed spherical topology, and
β = 1/kBT is the inverse temperature. A tuple, η = [{ ~X}, {T }], represents a state of
the membrane in configuration space. In the DTMC simulation, transitions between states,
η → η

′
, are effected by importance sampling [4]. Time in DTMC simulations, is expressed in

units of Monte Carlo steps (MCS), defined by performing N attempts to displace a randomly
chosen vertex and L attempts to flip a randomly chosen link, as in Fig. S2(c). The rules of
importance sampling and details of each move are as follows:

(a) Vertex moves : The vertex positions of the surface are updated, { ~X} → { ~X ′}, by dis-
placing a randomly chosen vertex within a cube of side 2σ around it, with fixed triangulation
{T }. As a result, the old configuration of the membrane η = [{ ~X}, {T }] is updated to a

new configuration η
′
= [{ ~X ′}, {T }]. The attempted moves are accepted using the Metropo-

lis scheme [5]. The value of σ is chosen appropriately so that the acceptance of vertex moves
is close to 50%. In our simulations we have chosen σ = 0.1.

(b) Link flips : An edge shared between two triangles is flipped to link the previously
unconnected vertices of the triangles. Such a move changes the triangulation map from
{T } → {T ′}, in the process of which it changes the neighbourhood of some vertices.
Recalling that a vertex represents a finite region of the lipid membrane, changes in the
neighbourhood of these vertices represent material (lipids or any other membrane constituents)
diffusion. With fixed vertex positions, the old and new configurations in this case are
η = [{ ~X}, {T }] and η

′
= [{ ~X}, {T ′}], respectively.

The above DTMC moves obey detailed balance and are guaranteed to drive the membrane
towards equilibrium. In addition, we have introduced another degree of freedom associated
with the active protein species {φ}. The complete set of DTMC moves now include active
processes associated with changes in the value of φ at every vertex, φ � −φ, as described
in Supplementary Section S3. These active processes do not obey detailed balance.
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S3. TRANSITION PROBABILITIES OF ACTIVE PROCESSES AND

KOLMOGOROV LOOP CONDITION

Here we display the explicit form of the transition probabilities which take φ at every
vertex to −φ. At every vertex i, the transition probabilities for φ � −φ are taken to be
independent of each other. We denote the mean attempt rate for +1 → −1 as ε+ and
for −1 → +1 as ε−. Let N± be the instantaneous number of vertices with φi = ±1, with
N = N+ + N− being fixed. We choose a form of the transition probabilities, P+→− and
P−→+, so as to ensure that N± does not deviate significantly from a desired value N0

± [6],

P+→− = ε−

(
N+

N

)
1

1 + exp(ζ[N+ −N− − A0])

(3)

and,

P−→+ = ε+

(
N−
N

)
1

η + exp(−ζ[N+ −N− − A0])
.

(4)

These transition rates are entirely dependent on the preferred asymmetry parameter, A0 ≡
N0

+ − N0
−, and the parameter ζ, which sets the scale of fluctuations in N+. N0

+ and N0
−

denote the steady state mean values of N+ and N−; we ensure that N± reaches N0
± by

setting η =
(

2N−
N+
− 1
)

in (4).

Note that the above transition probabilities do not depend on the energy change associ-
ated with a change in local configuration, φ � −φ. This is unlike what one would expect
for transition probabilities obeying detailed balance.

We now explicitly show that this form of transition probabilities do not obey detailed
balance, by demonstrating a violation of the Kolmogorov loop condition. The Kolmogorov
loop condition states that for every loop in state space, the product of transition probabilities
in one direction is equal to the product taken in the reverse direction. Our task is therefore
to construct a loop where this condition is violated.

Consider a Kolmogorov loop connecting four distinct states of the membrane, labeled 1
- 4, and characterized by state variables {φ,H}, as shown in TABLE I below :

state φ H morphology

1 -1 = 0 nearly flat

2 -1 6= 0 curved

3 1 6= 0 curved

4 1 = 0 nearly flat

TABLE I. Enumeration of the states considered in the Kolmogorov loop diagram and the associated

membrane morphology.

The transition between any two states with the same value of φ is an equilibrium pro-
cess — here, this corresponds to transitions between 1 ↔ 2 and 3 ↔ 4. Such transitions
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are characterized by a change in the elastic energy of the membrane ∆E, which can either
be positive or negative. In perspective, one of these transitions corresponds to a mem-
brane relaxation from a deformed/undeformed state following the unbinding/binding of a
curvature-generating vesicle-protein complex. If ∆E be the change in energy upon relax-
ation, it can be shown that the transition probabilities for the various equilibrium transitions
are,

P21 = P43 = min{1, exp(−β∆E)} = 1 since ∆E < 0

P12 = P34 = min{1, exp(−β∆E)} < 1 since ∆E > 0. (5)

equilibrium

equilibrium

Equilibrium transition probabilities

Kolmogrov loop condition 

(clockwise) (counterclockwise)

1 2

34
a
ct

iv
e

a
ct

iv
e

P21

P12

P43

P34

P43 = P21 = exp(−β∆E) ≥ 1 since ∆E < 0

P34 = P12 = exp(−β∆E) ≤ 1 since ∆E > 0

P12P23P34P41 ̸= P14P43P32P21

φ = −1, H ̸= 0, N+ = n

P 3
2

P 2
3

P 1
4

P 4
1

φ = −1, H = 0, N+ = n

φ = 1, H = 0, N+ = n + 1 φ = 1, H ̸= 0, N+ = n + 1

FIG. S3. A Kolmogorov loop diagram illustrating the transition probabilities between four distinct

states of the membrane.The number of active species in states 1 and 2 is N+ = n and in states in

3 and 4 is N+ = n+ 1.

The transition between any two states with different values of φ is an active process -
here, this corresponds to transitions between 2 ↔ 3 and 4 ↔ 1. In our model, we have
taken the rates for the transition of the state variable φ from 1 → −1 and −1 → 1 to
be independent of the local curvature and labelled them as ε− and ε+, respectively. The
probabilities to transition between the various active states can be computed using eqns.(3)
and (4) as:

(a) Addition of active species: N+ = n→ N+ = n+ 1

P23 = P14 = ε+

(
1− n

N

) 1{(
2 n
N
− 3
)

+ exp (−ζ(2n−N − A0))
} (6)

(b) Removal of active species: N+ = n+ 1→ N+ = n

P32 = P41 = ε−

(
n+ 1

N

)
1

{1 + exp (ζ(2n+ 2−N − A0))}
(7)
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In systems where microscopic reversibility is obeyed, the Kolmogrorov loop condition states
that the clockwise and counter-clockwise transition probabilities are related by,

P12P23P34P41 − P14P43P32P21 = 0 . (8)

From Fig. S3, the difference in the transition probabilities in the clockwise and counter-
clockwise directions is non-zero. This is a clear violation of the Kolmogorov loop condition,
and hence a violation of the detailed balance. The Kolmogorov loop condition is restored if
we set either C0 = 0 or ε = 0. In summary, the binding and unbinding kinetics of curvature
remodeling proteins is an active process, since they violate microscopic reversibility.
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S4. EQUILIBRIUM MEMBRANE CONFORMATIONS AND PHASE

DIAGRAMS

Here we discuss the sequence of equilibrium shapes obtained upon varying J , C0 and ∆p0,
and the corresponding equilibrium phase diagram. A subset of vertices N+ are assigned a
value φ = +1, the rest φ = −1. The φ = +1 vertices, which we will call protein complexes,
induce a local spontaneous curvature C0 on the membrane. We evolve the membrane using
equilibrium DTMC moves, vertex moves, link flips and φ-exchanges. We do not allow for
the active φ� −φ moves, i.e., we set ε = 0.

Phase diagram in J−C0 : We assign N0
+ = 0.1N vertices on the membrane to have φ = +1.

The equilibrium conformations of such a closed membrane are shown in Fig. S4. The field φ
(denoting the protein complex) on the membrane behaves in a manner similar to a system
of Ising spins. When J = 0, the protein complexes do not aggregate and the membrane
remains homogeneous, for all values of C0. The elastic energy of the membrane is minimized
by locally deforming the membrane around the vicinity of the protein complex. When
J > J∗, the protein-complexes aggregate to form large clusters, by a process of coalescence
and growth. The larger clusters deform the membrane locally, in order to reduce the line
tension, leading to small buds (when C0 is small), and thin tubular buds (when C0 is large).
These shapes are shown in Fig. S4, for J = 1.

0.1 0.4 0.7 1.0

0.0

1.0

FIG. S4. Equilibrium configurations of a closed membrane in the J − C0 parameter space, with

N0
+ = 0.1N and ∆p = 0.0. The dark regions show the location of the protein complexes, φ = +1.

Phase diagram in ∆p0 − C0 : We now set φ at every vertex to be +1 (N0
+ = N), and

study the equilibrium shapes of the membrane as a function of osmotic pressure difference
∆p0 = pin−pout and spontaneous curvature C0. When κ = 20kBT and C0 = 0, the sequence
of equilibrium shapes goes from stomatocytes → discs → sphere, as the osmotic pressure
difference ∆p0 goes from −1→ 0→ +1, a result consistent with the κ−∆p phase diagram
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reported by Kroll and Gompper [7]. The conformation of the membrane changes significantly

-1 1-0.5 0.50

 0.3

tube stomatocyte

 0.1

 0.2

discquasi-sphericalpearl-necklace

FIG. S5. Equilibrium phase diagram of a closed membrane in the ∆p0 − C0 plane, showing the

sequence of shapes in the panel below. Flattened discs, tubes and stomatocytes are obtained at

negative values of ∆p0.

when the spontaneous curvature C0 is non-zero. When C0 > 0.2, in the ∆p0 > 0 regime,
the quasi spherical membrane becomes unstable and breaks into a string of smaller buds .
Similarly, in the regime where ∆p0 < 0, non-zero values of the spontaneous curvature leads
to the emergence of tubular structures as shown in Fig. S5.
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S5. APPROACH TO STEADY STATE OF THE ACTIVE MEMBRANE

Here we demonstrate, by computing the time series of some physical quantities, that
starting from an initial configuration, the active membrane evolves to a nonequilibrium
steady state as shown in Fig. S6.
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FIG. S6. (a) Initial (quasi-spherical) and final (tubule) steady state configuration of the active

membrane, with parameters, ε = 0.1, N0
+ = 0.1N , J = 1, and C0 = 0.8. Time series of volume V ,

the number clusters Nclus and elastic energy Hel, fluctuate about a constant mean at late times,

indicating that the membrane has reached steady state.
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S6. CLUSTER SIZE DISTRIBUTION ON THE ACTIVE MEMBRANE

The cluster size distributions P (s) on an active membrane, at a fixed activity ε = 0.1
and N0

+ = 0.1N for J = 0, 1, 3, 5, and 10 are shown in (Fig. S7). Data are fitted to
P (s) = As−α exp(−s/s0), and the fit parameter values shown in the Table below. The form
of the distribution, for small values of J , is consistent with that reported in [8].

FITTED DATA

0.1 0 2.378585325 1.05317488 0.937804437

0.1 1 2.089397162 0.601149638 0.9683405

0.1 3 1.432626958 0.653669696 1.354211566

0.1 5 1.24110138 2.23E-06 1.202869592

0.1 10 1.174389505 7.24E-09 1.371321774

1 1010
-6

10
-4

10
-2

10
0

Fit function

s

P
(s

)

J = 0

J = 1

J = 3

J = 5

J = 10

As−α exp (−s/s0)

FIG. S7. Cluster size distribution on an active membrane with ε = 0.1N/MCS, C0 = 0.8, and

N0
+ = 0.1N for different values of J . Solid lines show fit to As−α exp(−s/s0). The best fit values

of A, s0 and α are shown in the table. Data from simulations are shown as open symbols.
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S7. GEOMETRIC MEASURES OF ACTIVE MEMBRANE SHAPES : RADIUS

OF GYRATION, ASPHERICITY, AND SHAPE ANISOTROPY

Other geometrical measures of the shape can be obtained from the gyration tensor G,
defined as,

G =
1

N

N∑
v=1

(
~Rv − ~Rcom

)
⊗
(
~Rv − ~Rcom

)
. (9)

Here ~Rv denotes the position of vertex v and ~Rcom denotes the position of the center of
mass of the closed membrane. We use the eigenvalues of G, viz., λ1, λ2, and λ3 (with
λ1 ≤ λ2 ≤ λ3), to construct five geometric measures that describe the size, asphericity and
shape anisotropy of the closed active membrane :

(1) In addition to the principal values that define the mean size of the closed membrane
along their respective principal directions, the mean eigenvalue defined as,

λ ≈ R2
G

3
=
λ1 + λ2 + λ3

3
, (10)

is a measure of the average size of the membrane.

(2, 3) Deviation from spherical and quasi-spherical shapes can determined from the ratio
of the eigenvalues λ1/λ3 and λ2/λ3.

(4, 5) Shape anisotropy can be quantified in terms of [9],

S3 =

〈(
λ1 − λ

) (
λ2 − λ

) (
λ3 − λ

)〉〈
(λ1 + λ2 + λ3)

2〉 , (11)

and,

∆3 =
〈λ21 + λ22 + λ23 − λ1λ2 − λ2λ3 − λ1λ3〉

2
〈
λ
3
〉 , (12)

The behaviour of the eigenvalues for idealized shapes that closely resemble the steady
state closed membrane conformations, have been listed in TABLE II.

Membrane shape Ideal shape eigenvalues S3 ∆3

Quasi-spherical Sphere λ1 ≈ λ2 ≈ λ3 0 0

Tubules Cylinder λ1 >> (λ2 ≈ λ3) and λ > (λ2, λ3) < 0 > 0

Flattened Sac Disc (λ1 ≈ λ2) >> λ3 and λ > λ3 > 0 > 0

Stomatocyte Concentric (hemi)spheres λ1 ≈ λ2 ≈ λ3 0 0

TABLE II. The eigenvalues and measures of anisotropy for the major class of membrane shapes

determined using idealized geometries.

Fig. S8(a) and Fig. S8(b) shows how the eigenvalues and the geometrical measures derived
from them, vary as a function of C0 for two values of ε = 0.1 and 0.5, respectively. Rest of
the parameters are N = 2030, N0

+ = 0.1N and J = 0.
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FIG. S8. Eigenvalues of the gyration tensor (λ1, λ2, λ3), asphericity and shape-anisotropy for an

active vesicular membrane as a function of C0, for (a) ε = 0.1, and (b) ε = 0.5. In both, N = 2030,

N0
+ = 0.1N and J = 0.

As before, quasi-spherical shapes of the active membrane become unstable with increasing
activity ε and C0. The systematic decrease in λ with increasing C0 is a signature of the
onset of ramified shapes. A decrease in λ2/λ3 distinguishes tubules from flattened sacs. The
noticeable dip in λ2/λ3 for 0.6 < C0 < 0.8, in Fig. S8(a), marks the regions corresponding
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to tubule conformations. The subsequent rise in λ2/λ3 at larger C0, accompanied by the
constancy of λ1/λ3, indicates that the membrane configuration is stabilized as a flattened
sac. This shape transition is also captured by S3, which becomes negative for C0 ∼ 0.6 and
goes to zero for large values of C0. For the range of C0 probed in Fig. S8(b), the eigenvalues
and other measures predict disc-like shapes at C0 = 1.0 which agrees very well with Fig. 5(a)
of the main manuscript. The disc to stomatocyte transition sets at much larger values of
C0. Hence the shape transitions follow the sequence, Spherical → tubule → flattened sac →
Stomatocyte.

A similar transition of the tubule to flattened sac, holds when the activity ε = 0.5
(Fig. S8(b)). However in this case there appears to be a pronounced stabilization of the
stomatocyte shape. The eigenvalues appear to converge for C0 > 0.75, as should be the case
for a stomatocyte (see, TABLE II). This convergence happens exactly at values correspond-
ing to the phase boundary shown in the ε− C0 phase plot shown in the main manuscript.

As can be seen from the figures, the variations in shape anisotropy and asphericity are
consistent with our observation of shape changes described in the main manuscript.
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S8. MOVIES SHOWING TIME EVOLUTION OF SHAPE AND COMPOSITION

WHEN ACTIVITY IS SHUT OFF

Supplementary Movies M1 and M2 shows how an active membrane at steady state, with
ε = 0.1N/MCS, N+ = 0.1N , κ = 20kBT , C0 = 0.8, for J = 0 and J = 1, respectively,
dynamically evolves towards equilibrium when the activity ε is abruptly shut off. Each frame
in the movie corresponds to 1000 Monte Carlo steps.

Movie M1. Relaxation of a tubular membrane with ε = 0.1N/MCS, N+ = 0.1N , κ = 20kBT ,

C0 = 0.8, and J = 0 to its equilibrium state upon shutting off activity. ( Click to view

movie—Make sure you have the latest version of adobe reader ).

Movie M2. Relaxation of a tubular membrane with ε = 0.1N/MCS, N+ = 0.1N , κ = 20kBT ,

C0 = 0.8, and J = 1 to its equilibrium state upon shutting off activity. ( Click to view

movie—Make sure you have the latest version of adobe reader ).


Movie-M1(Kumar).mp4
Media File (video/mp4)


Movie-M2(Kumar).mp4
Media File (video/mp4)
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