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Additional content may also be found in the Ph.D. thesis of Kiyotaka Akabori
that can be accessed at http://lipid.phys.cmu.edu.

S1 Sample q-space

The incoming and outgoing wavevectors of the X-ray beam in Fig. 1 are given by

kin =
2π

λ
ŷ, kout =

2π

λ
(sin2θ cosφ x̂+ cos2θ ŷ+ sin2θ sinφ ẑ) , (1)

where λ is the X-ray wavelength, 2θ is the total scattering angle, and φ is the
angle measured from the equator on the detector. The scattering vector (also called
momentum transfer vector) is the difference between kout and kin,

q = kout−kin

= q(cosθ cosφ x̂− sinθ ŷ+ cosθ sinφ ẑ) , (2)

where q = 4π sinθ/λ is the magnitude of the scattering vector. When the sample
is rotated by ω about the lab x-axis in the clockwise direction as shown in Fig. 1,
the sample q-space also rotates and is given by

êx = x̂, êy = cosω ŷ+ sinω ẑ, êz =−sinω ŷ+ cosω ẑ. (3)

From Eq. (2) and (3), we find Cartesian components of the sample q-space to be

qx = q · êx = qcosθ cosφ ,

qy = q · êy = q(−sinθ cosω + cosθ sinφ sinω) ,

qz = q · êz = q(sinθ sinω + cosθ sinφ cosω) . (4)

The position, (X ,Z), of a CCD pixel is measured with respect to the beam and
given by

X = S tan2θ cosφ , Z = S tan2θ sinφ , (5)

where S is the distance between the sample and detector. From a model for the
electron density of a lipid bilayer, one calculates the X-ray scattering intensity
pattern, I(q). Then, Eq. (4) and (5) relate I(q) to the experimentally measured
intensity pattern, I(X ,Z).

For low angle X-ray scattering (LAXS), it is convenient to linearize Eq. (4)
in terms of θ and ω . In the small angle approximation, sinφ ≈ Z/(2Sθ) and
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cosφ ≈ X/(2Sθ), and

qx ≈
4πθ cosφ

λ
≈ kX/S

qy ≈ qzω−
4πθ 2

λ
≈ qzω−

λq2
z

4π

qz ≈
4πθ sinφ

λ
≈ kZ/S, (6)

with k = 2π/λ . For wide angle X-ray scattering, the exact relations given by
Eq. (4) are necessary. Especially in the transmission experiment, where ω is large,
an observed X-ray pattern appears nontrivial, and quantitative analysis requires
Eq. (4).

S2 LAXS Data Reduction

The lattice structure of a stack of bilayers in the ripple phase is a two dimensional
monoclinic lattice. In an oriented sample, the stacking z direction and the ripple
x direction are separated, rendering peak indexing a trivial task as shown in the
next subsection. However, obtaining the form factors from measured intensity is
considerably more involved and requires the development of the three correction
factors described in the following three subsections.

S2.1 Lattice Structure – Unit Cell

The unit cell vectors for the two-dimensional oblique lattice shown in Fig. S1 can
be expressed as4

a1 =
D

tanγ
x̂+Dẑ (7)

and
a2 = λrx̂. (8)

The corresponding reciprocal lattice unit cell vectors are

A1 =
2π

D
ẑ (9)

and
A2 =

2π

λr
x̂− 2π

λr tanγ
ẑ. (10)
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The reciprocal lattice vector, qhk for the Bragg peak with Miller indices (h,k) is

qhk = hA1 + kA2, (11)

so its Cartesian components are

qhk · x̂ = qx
hk =

2πk
λr

(12)

qhk · ŷ = qy
hk = 0 (13)

qhk · ẑ = qz
hk =

2πh
D
− 2πk

λr tanγ
. (14)

Our sample consists of many ripple domains with a uniform distribution of in-
plane directions of the ripple wavevector, a2 in Fig. S1. This means that, for any
(h,k) reflection, there is always a domain that has an in-plane orientation such that
quasi-elastic scattering occurs and a peak is observed on the CCD. In this case,
qx

hk and qy
hk may be combined to give qr

hk = 2πk/λr. Fig. 2 shows this Miller index
pattern from which the in-plane ripple repeat distance λr = 145.0 Å, the out-of-
plane repeat distance D = 57.8 Å, and the oblique angle γ = 98.2° for that sample
were easily obtained. Values of qr

hk and qz
hk for observed reflections are included

in Tables S3 and S4.

γxM
A

a2

a1

λr

D

x

z
ψ

ξM ξm

Fig. S1 Unit cells for the lattice are shown by dashed lines. The schematic for the bilayer
centers is shown by thick, solid lines. Notations in the figure are (a1 and a2: lattice unit
vectors), (D: lamellar repeat distance along z), (λr = |a2|: ripple wavelength), (γ: oblique
angle), (A: ripple amplitude), (ψ: chain tilt angle with respect to the z-axis), and (xM:
projected length of the major arm).

S2.2 Lorentz Correction

Our sample has in-plane rotational symmetry about the z-axis. Ignoring mosaic
spread to which we will come back later, this means that the sample consists
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of many domains with differing ripple directions, assuming that all domains are
parallel to the substrate. In sample q-space, ripple (h,k 6= 0) side peaks are rep-
resented as rings centered at the meridian, or qz-axis, while (h,k = 0) main peaks
are still points on the meridian (see Fig. S2). Then, for an arbitrary incident angle
ω , (h,0) peaks are not observed while side peaks are observed for a range of ω as
will now be explained.

In order to capture all (h,k) peaks in one X-ray exposure, the sample was
continuously rotated over a range of ω , ∆ω , about the x-axis. As a result of this
rotation, the (h,0) main peaks become arcs that subtend an angle ∆ω , as shown in
Fig. S3, with its lengths equal to ∆ωqz

h0. The detector records the intersections of
these arcs with the Ewald sphere, so the intrinsic scattering intensity of the (h,0)
reflections is the product of the observed intensity, Iobs

h0 with the arc length, that is,

Ih0 = ∆ωqz
h0Iobs

h0 . (15)

This gives the usual Lorentz correction for lamellar orders.
Now, we consider relative intensity of side peaks for a given order h. As de-

scribed earlier, (h,k 6= 0) side peaks are represented as rings whose radius is qr
hk in

the sample q-space. Because only the domains with the right ripple direction can
satisfy Bragg’s condition at a given fixed angle ω , the intrinsic scattering intensity
in this ring is reduced by a factor of 2πqr

k compared to the (h,0) reflections. This
reduction of intensity can be nicely visualized by the Ewald sphere construction
shown in Fig. S2, which shows that entire rings are not intersected by the Ewald
sphere at a fixed angle. Then, the intrinsic scattering intensity in a ring is

Ihk 6=0 ∝ 2πqr
hkIobs

hk . (16)

During an X-ray exposure, the sample q-space rotates and the rings are intersected
by the Ewald sphere at all our experimental incident angles ω . However, as Fig. S4
shows, only small parts of the rings are actually intersected with the Ewald sphere.
To obtain the full expression for (h,k 6= 0) reflections, we now turn to a more
rigorous calculation.

Mathematically, the rotation is equivalent to an integration over ω . In LAXS,
qz is nearly constant at a given pixel as ω is varied, which can be seen from Eq. (6).
As Eq. (6) shows, ω dependence appears only through qy, so rotating the sample
is realized by integrating over qy; formally, we write dω = dqy/qz. To derive the
integration limits on qy, let us consider two cases: (1) When ω ≤ 0, the incoming
X-ray beam is blocked by the back of the substrate. This sets the lower limit of
ω to 0. Plugging ω = 0 in Eq. 6), we find the lower limit of the qy integration
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k=0

k≠0

ω=0o
qy

qz

kin

kout q

CCD

Fig. S2 Ewald sphere construction to obtain relation between location of scattering peaks
on the CCD and their q-space values. The incoming X-ray wavevector is kin, and kout is a
scattered X-ray wavevector with |kout|= |kin| for the predominant quasi-elastic scattering.
A part of the q-space pattern is shown for the ripple phase in the low angle regime. For
(h,k = 0) Miller indices, there are points labelled k = 0 on the qz axis. For (h,k 6= 0)
there are rings labelled k 6= 0 centered on the qz-axis. The red dashed line shows the
portion of a ring that is inside the Ewald sphere and the portion outside is shown as a
black solid or dashed line. Diffraction occurs where the ring and the sphere intersect. For
our wavelength of 1.175 Å, |kin|= 5.35 Å−1 and for h = 5, qz

50 = 0.54 Å−1, one tenth of
|kin|. For clarity |q| is drawn large compared to |kin|.
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Fig. S3 Trajectory of k = 0 peak as the sample is rotated by ω is shown as a thick blue
line.

Fig. S4 q-space representations of Bragg peaks and Bragg rings for h = 1 and 2 and
k = 0, 1, and 2 in qz

hk planes. The intersection between the Ewald sphere and a Bragg
peak/ring is indicated in red. The observed intensity for the k 6= 0 orders is proportional
to the fraction of the length of red arcs to the circumference. This fraction is equal to one
for k = 0 reflections. Because the reflections are not in the same qz plane, the range of qy

integration indicated by the height of the gray rectangle is different for different h orders.
For γ 6= 90°, the range of qy integration is slightly different for different k reflections with
the same h. The values shown are for D = 58 Å, λr = 145 Å, γ = 90°, and λ = 1.175
Å. For visibility, the height of the gray rectangles is exaggerated by about a factor of 10,
exaggerating the arc curvature. With the shown large curvature, the peaks would have an
asymmetric shape in the qr direction.
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to be −λq2
z/(4π). (2) When ω ≥ 2θ , the substrate blocks the outgoing X-ray,

so the maximum ω = 2θ . Within the small angle approximation, qz ≈ 4πθ/λ .
Then, the maximum ω can be expressed as λqz/(2π). Plugging this expression
for ω in Eq. (6), we find the upper limit of the qy integration to be λq2

z/(4π). Also
integrating over the detector pixels X and Z to obtain integrated intensity, we write
the observed intensity as

Iobs
hk ∝

∫
dX
∫

dZ
∫

dω Ihk

∝

∫
dqx

∫
dqz

∫ λq2
z

4π

− λq2z
4π

dqy

qz
Ihk(q), (17)

where 1/qz factor in qy integration is the usual Lorentz polarization factor in the
small angle approximation.

For a crystalline sample with in-plane rotational symmetry, the structure factor
of a ripple Bragg peak is

Shk(q) = Shk(qr,qz) =
1

2πqr
δ (qr−qr

hk)δ (qz−qz
hk), (18)

where qr
hk = 2π|k|/λr. Thus, the scattering pattern in the ripple phase is a col-

lection of Bragg rings for k 6= 0 centered at the meridian and the Bragg peaks for
k = 0 located along the meridian. The scattering intensity is I(q) = |F(q)|2S(q),
where F(q) is the form factor. After the qz integration, the observed, integrated
intensity of (h,k) peak is proportional to

Iobs
hk ∝

|Fhk|2

qz
hk

∫
dqx

∫ qy0
hk

−qy0
hk

dqy
δ (qr−qr

hk)

2πqr
, (19)

where qy0
hk = λ (qz

hk)
2/(4π). For side peaks (k 6= 0), we have∫

dqx

∫ qy0
hk

−qy0
hk

dqy
δ (qr−qr

hk)

2πqr
≈
∫ qy0

hk/qr
hk

−qy0
hk/qr

hk

dφ

∫
dqr qr

δ (qr−qr
hk)

2πqr

=
qy0

hk
πqr

hk
. (20)

For main peaks (k = 0), we have∫
dqx

∫ qy0
hk

−qy0
hk

dqy
δ (qr−qr

hk)

2πqr
=
∫ 2π

0
dφ

∫
dqr qr

δ (qr−qr
hk)

2πqr

= 1 (21)
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Using Eq. (19 – 21), we write the observed integrated intensity as

Iobs
h0 ∝

|Fh0|2

qz
h0

(22)

Iobs
hk ∝

|Fhk|2

qz
hk

qy0
hk

πqr
hk

= |Fhk|2
λqz

hk
2π

1
2πqr

hk
= |Fhk|2

2θhk

2πqr
hk
, (23)

where 2θhk = λqz
hk/(2π) is the incident angle at which the outgoing X-ray for the

peak (h,k) is blocked by the substrate. Eq. (22) and (23) relate the form factor
calculated from a model to the experimentally observed intensity.

S2.3 Absorption Correction for LAXS

In this subsection, we derive the absorption correction for an oriented sample.
The calculation involves an explicit integration over the incident angle, ω , which
is necessitated by the sample rotation during an X-ray exposure. The procedure
is to write down an absorption factor, A(ω,θ), for a given scattering angle 2θ at
a given incident angle θ , and then integrate over ω . We ignore qx dependence
because the X-ray path inside the sample is nearly within the y-z plane for low
angle scattering.

Fig. S5 The path of X-rays within the sample. The incident angle is ω and the total scat-
tering angle is 2θ . An X-ray with a penetration depth of z is shown. The total thickness
of the sample is t. Refraction correction is negligible for θ > 0.5°(h = 1).

Assume that all the X-rays enter the sample from the top surface. The total
scattering angle is given by 2θ (see Fig. S5). Let the z-axis point downward. At
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the top surface (air-sample interface), z = 0. For X-rays that travel to z and then
scatter, the total path length within the sample is

L(z,ω,θ) =
z

sinω
+

z
sin(2θ −ω)

= zg(ω,θ), (24)

where g(ω,θ) = (sinω)−1 + [sin(2θ −ω)]−1. For each ray, the intensity is at-
tenuated by the sample. Compared to the scattering intensity from z = 0, the
attenuated intensity is

I(z,ω,θ) = I0 exp
(
−L

µ

)
, (25)

where µ is the absorption length of an X-ray. µ is about 2.6 mm for 10.5 keV
X-ray for both water and lipids in all phases1. The observed sample scattering
intensity at fixed ω is equal to the integration of Eq. (25) over the total thickness
of the sample and given by

I(ω,θ) =
∫ t

0
dzI(z,ω,θ) = I0

∫ t

0
dzexp

(
−g(ω,θ)

µ
z
)

= I0µ

1− exp
(
− t

µ
g(ω,θ)

)
g(ω,θ)

. (26)

Defining the absorption factor at a fixed angle to be A(ω,θ), the observed intensity
can also be written as

I(ω,θ) = A(ω,θ)tI0, (27)

where tI0 is the intensity we would observe for non-absorbed X-rays. Equating
Eq. (26) and (27), we get

A(ω,θ) =
µ

t

1− exp
(
− t

µ
g(ω,θ)

)
g(ω,θ)

. (28)

If µ is taken to infinity (no absorption), A(ω,θ) goes to 1 as expected. The ab-
sorption factor Ah0 for the k = 0 peaks is given by A(ω = θ = θB), plotted in
Fig. S6. As shown, this factor is about 20 % for h = 1 peak relative to h = 4, so it
is not negligible.

For k 6= 0 side peaks, an integration over the incident angle ω is necessary
because these peaks are observable at all our experimental incident angles as de-
scribed in section S2.2. The observed intensity for side peaks from a rotating
sample is simply

Iobs(θ) =
∫ 2θ

0
dω I(ω,θ). (29)
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Fig. S6 Absorption factors Eq. (28) as a function of qz ≈ 4πθ/λ . Values at qz = 2πh/D
corresponding to D = 57.8 Å are shown as squares. µ = 2600 µm, t = 10 µm, and λ =
1.175 Å.
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Fig. S7 Eq. (28) plotted as a function of ω for θ = θB = 0.58°, corresponding to the h = 1
Bragg angle for D = 57.8 Å.
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The upper integration limit is equal to 2θ because the substrate completely blocks
the scattered X-rays above this angle as discussed in section S2.2. Eq. (28), which
is essentially the integrand in Eq. (29), is plotted in Fig. S7. It is maximum when
ω = θ , meaning that the path length is shortest at the Bragg condition. The non-
attenuated observed intensity is equal to 2θ tI0. We define the absorption factor
A(θ) to be the ratio of the total observed intensity to the total non-attenuated
intensity,

A(θ)≡ Iobs(θ)

2θ tI0
. (30)

Using Eq. (28) and (29) in (30), we arrive at the final absorption factor

A(θ) =
1

2θ

∫ 2θ

0
dωA(ω,θ) =

µ

2θ t

∫ 2θ

0
dω

1− exp
(
− t

µ
g(ω,θ)

)
g(ω,θ)

. (31)

Ahk = A(θ) is plotted in Fig. S6. The absorption correction Ac(θ) is the inverse
of Eq. (31).

S2.4 Correction due to Mosaic Spread

Integrated intensity needs to be corrected for mosaic spread, which consists of a
distribution of domains of bilayers misoriented with respect to the substrate. Dur-
ing an X-ray exposure, the sample was continuously rotated. Due to this rotation,
each pixel integrates intensity over a range of incident angles ω . A mosaic spread
distribution can be probed by changing ω , so rotating the sample is essentially
equivalent to integrating a mosaic spread distribution. Because the range of the
distribution probed is approximately given by ω = [0,2θhk] where θhk is the Bragg
angle for a (h,k) reflection, this range is larger for higher h orders. This effect is
illustrated in Fig. S8.

We limit χ − χhk to go from -1.4° to 1.4° by our choice of integration boxes
for the intensity. The effect of the χ − χhk cutoff is not very important because
most of the observed intensity was included in the integration boxes. In contrast,
the cutoff on ω due to the substrate blocking the scattering is important, especially
for lower h orders.

We assume the mosaic distribution to be an azimuthally symmetric 2D Lorentzian,
which has been observed experimentally in this laboratory (manuscript in prepa-
ration),

P(α) =
N

α2 +α2
M
, (32)
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χ-χhk

ω-θhk

ω=0°

ω=2θ10=1.16°

χ-χhk ≈ 1.4°

ω=0°

ω=2θ30=3.48°

α=5°

α=0°

α=2.5°

χ-χhk ≈ -1.4°

ω=θhk

Fig. S8 Contours of a mosaic spread distribution projected on the ωχ-plane, where χ−
χhk is an angle measured from a (h,k) reflection on the detector (χ = π/2−φ in Fig. 1)
and θhk is the Bragg angle for the (h,k) reflection. The distribution function is assumed
to be a 2D Lorentzian centered at α = 0. Domains with α = 0 are probed at ω = θhk and
χ = χhk. Integrated intensity of (1,k) reflections arise from domains in the green shaded
area while that of (3,k) reflections are from the blue shaded area, which is three times
larger.
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where N is a normalization constant and αM is the half width half maximum of
the distribution. N satisfies

N =
1

2π

(∫ π

2

0
dα

α

α2 +α2
M

)−1

. (33)

For small α , Eq. 32 can be approximated in terms of Cartesian coordinates as

P(ω,χ)≈ N
ω2 +χ2 +α2

M
. (34)

We then consider a two dimensional contour map on the ωχ plane, as shown in
Fig. S8. Mosaic factor for a reflection with Bragg angle θB is given by

M =
∫

θB

−θB

dω

∫
χ0

−χ0

dχ P(ω,χ) =
∫

θB

−θB

dω

∫
χ0

−χ0

dχ
N

ω2 +χ2 +α2
M

(35)

After the integration over χ , Eq. (35) is

M = 4N
∫

θB

0

dω√
ω2 +α2

M

arctan

 χ0√
ω2 +α2

M

. (36)

Eq. (36) is plotted in Fig. S9.

S2.5 Synopsis of Intensity Corrections

Tables S1 and S2 show the values of the corrections obtained from the analysis
in the previous three subsections using properties of our samples. The absorption
and mosaicity corrections are significant for the lowest orders and their product
largely accounts for the smaller intensities previously noted2 for the lower orders
of gel phase oriented samples compared to unoriented MLV samples which do not
have these corrections. These two corrections decrease gradually as h increases
with small modulations with k. In contrast, the Lorentz correction varies strongly
with both h and k although it is the same for the same h/k. The importance of the
previous three sections is emphasized by the result that the largest correction for
(1,3) is a factor of 367 greater than for the smallest correction for (1,0).

S15



h k Absorption Mosaicity Lorentz All
1 -1 1.96 2.63 14.16 73.086
1 0 1.41 2.56 0.11 0.394
1 1 1.79 2.56 12.67 58.027
1 2 1.74 2.53 25.00 110.055
1 3 1.69 2.50 34.12 144.592
2 -2 1.45 2.27 14.19 46.738
2 -1 1.43 2.27 6.97 22.641
2 0 1.19 2.22 0.22 0.577
2 1 1.41 2.22 6.45 20.187
2 2 1.39 2.22 12.51 38.607
2 3 1.39 2.22 18.29 56.444
2 4 1.39 2.22 23.92 73.827
2 5 1.39 2.17 28.76 86.837
2 6 1.37 2.17 33.73 100.446
3 -2 1.30 2.13 9.31 25.723
3 -1 1.30 2.13 4.50 12.436
3 0 1.14 2.13 0.33 0.788
3 1 1.28 2.08 4.35 11.586
3 2 1.28 2.08 8.52 22.766
3 3 1.28 2.08 12.56 33.555
3 4 1.27 2.08 16.42 43.295
3 5 1.27 2.08 20.18 53.212
3 6 1.27 2.08 23.81 62.802
4 -3 1.23 2.04 10.54 26.557
4 -2 1.22 2.04 6.94 17.265
4 -1 1.22 2.04 3.40 8.454
4 0 1.10 2.04 0.44 0.976
4 1 1.22 2.04 3.28 8.153
4 2 1.22 2.04 6.39 15.897
4 3 1.21 2.04 9.50 23.450
4 4 1.20 2.04 12.60 30.981
4 5 1.20 2.04 15.49 38.076
4 6 1.20 2.04 18.35 45.126

Table S1 Correction factors for the raw intensities of the ripple LAXS peaks for thickness
of an oriented sample t = 10 µm and mosaic spread αM = 0.05°.
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h k Absorption Mosaicity Lorentz All
5 -3 1.19 2.00 8.44 20.084
5 -2 1.19 2.00 5.49 13.060
5 -1 1.19 2.00 2.64 6.291
5 0 1.08 2.00 0.54 1.169
5 1 1.19 2.00 2.43 5.774
6 -4 1.16 2.00 9.36 21.778
6 -3 1.16 2.00 6.92 16.094
6 -2 1.16 2.00 4.47 10.389
6 -1 1.16 2.00 2.23 5.193
6 0 1.06 2.00 0.65 1.389
6 1 1.16 2.00 2.24 5.217
6 2 1.16 2.00 4.40 10.208
6 3 1.15 2.00 6.38 14.657
6 4 1.15 2.00 8.40 19.309
7 -4 1.14 1.96 7.94 17.682
7 -3 1.14 1.96 5.86 13.060
7 -2 1.14 1.96 3.82 8.512
7 -1 1.14 1.96 1.86 4.145
7 0 1.05 1.96 0.76 1.569
8 0 1.04 1.96 0.87 1.773
9 -5 1.11 1.96 7.60 16.549
9 -4 1.11 1.96 6.07 13.233
9 -3 1.11 1.96 4.50 9.790
9 -2 1.11 1.96 2.98 6.497
9 -1 1.11 1.96 1.50 3.263
9 0 1.04 1.96 0.98 2.000

Table S2 Corrections for the intensities of the ripple LAXS peaks (continued from Ta-
ble S1).
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Fig. S9 Mosaic factor given by Eq. (36) as a function of qz ≈ 4πθ/λ . Values at qz =
2πh/D corresponding to D = 57.8 Å are shown as squares. αM = 0.05° and χ0=1.4°.
Eq. (36) reaches ∼0.54 at θB = π/2 and χ0 = 1.4° and reaches ∼1 at θB = π/2 and
χ0 = π/2 as expected.

S3 Results for |Fhk| Form Factors

Tables S3 and S4 list the observed (h,k) reflections and their qz and qr values for
our best sample shown in Fig. 2. The qz values for observed peaks were corrected
for index of refraction. Column Iobs

hk is the sum of intensity observed within an
integration box centered on the peak with size shown in the box size column.
These intensities were multiplied by the total correction factor redisplayed from
Table S1, and the square root was taken to obtain unnormalized |Fhk|. As there
is an arbitrary scale factor in the data, the |Fhk| shown in Table S3 were then
normalized to set |F10| = 100.

The σI column in table S3 gives uncertainties on Iobs
hk . The largest contribution

to σI for weak orders was the background scattering, which was assumed to be
a constant for each peak and estimated by plotting a swath along a given peak
and seeing where the peak tail ended. This was done visually and repeating the
process led to differences which determined the estimated σI . For some peaks,
uncertainty mostly came from the mosaic arc of stronger nearby peaks. For exam-
ple, the (4, -1) peak was a strong order, but the mosaic arc of its nearby stronger
(4, 0) peak overlapped with the (4, -1) peak, giving a relatively large uncertainty
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on the (4, -1) peak. While most k < 0 peaks were susceptible to mosaic arc, k > 0
peaks were not. Therefore, though k > 0 peaks were weaker compared to corre-
sponding k < 0 peaks, their integrated intensity had smaller σI . We assigned a
large uncertainty on the (3, 1) peak because it overlapped with the qz tail of the
(3, -1) peak, making separation of (3, 1) and (3, -1) difficult. It was also not clear
whether the (3, 1) peak was extinct or not. σI for this peak was estimated by
placing a box centered at the nominal position of this peak, and it is likely that a
fraction of the intensity assigned to (3, -1) in table S3 belongs to (3, 1). The (1, 1)
and (1, -1) also overlapped in a similar manner, so their relative σI are larger than
some of the well separated less intense peaks. Some peaks, such as (1, 2), (4, 3),
(6, 2), (9, -1), (9, -3), and all the (8,k) peaks were deemed to be extinct because
neighboring peaks had observable intensity. As zero is also an observation, these
orders were also included in the table.

To assign uncertainties to the absolute form factors |F | =
√

I requires propa-
gating σI to σF . To do this, we estimated the most likely upper bound on each
measured intensity I +σI . The most likely upper bound for |F | was determined
by (|F |+σF)

2 = I +σI , which gives σF ,

σF = |F |
(
−1+

√
1+

σI

|F |2

)
. (37)

In the small σI/I regime, σF = σI/(2|F |). In the large σI/I regime, σF =
√

σI .
For the lower limit, a similar consideration gives the same uncertainty σF =
σI/(2|F |) for the small σI/I. The lower limit in the σI/I regime should be zero
for the absolute form factors |F |. For the form factor F , we take σF given by
Eq. (37) as an estimated uncertainty. For very weak peaks whose intensity could
not be determined but whose nearby peaks were observed, we assigned |F | = 0 and
σF =

√
σI where σI was estimated based on the background scattering intensity

at the q value corresponding to those unobserved weak peaks.
Our best oriented sample in Fig. 2 had almost the same D, γ , and only slightly

different λr as the best data of Wack and Webb3 from an unoriented sample. Ta-
ble S5 compares our oriented

∣∣Fori
hk

∣∣ with the unoriented
∣∣Fun

hk

∣∣. The most obvious
comparison is that there are very few unoriented orders, only 18 compared to 60
orders in tables S3 and S4. We could not determine the form factors for the h = 0
orders for our oriented sample because of strong attenuation of X-rays at ω ≈ 0°.
As noted in Sun et al.4, however, inclusion of h = 0 orders would not significantly
alter the bilayer structure, so these orders were omitted in Table S3. The k = 5
and k = 6 reflections shown in Table S5 provide higher in-plane resolution in the
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h k qz qr box size Iobs
hk σI correction |Fhk| σF phase

(Å−1) (Å−1) (pixels) (×103) factor
1 -1 0.102 -0.043 10 × 7 726.0 63.0 73.086 86.3 3.7 −
1 0 0.109 0.000 10 × 7 180818.0 1759.0 0.394 100.0 0.5 −
1 1 0.114 0.043 10 × 7 228.0 28.0 58.027 43.1 2.6 +
1 2 0.0 1.0 110.055 0.0 3.9 −
1 3 0.128 0.130 10 × 7 3.8 0.2 144.592 8.8 0.2 +
2 -2 0.206 -0.087 10 × 7 49.2 3.5 46.738 18.0 0.6 −
2 -1 0.212 -0.044 10 × 7 1818.0 20.0 22.641 76.0 0.4 −
2 0 0.218 0.000 10 × 7 10200.0 174.0 0.577 28.7 0.2 −
2 1 0.224 0.043 10 × 7 550.0 10.0 20.187 39.5 0.4 +
2 2 0.231 0.086 10 × 7 112.0 3.0 38.607 24.6 0.3 −
2 3 0.237 0.129 10 × 7 27.0 0.2 56.444 14.6 0.1 +
2 4 0.243 0.173 10 × 7 8.2 0.4 73.827 9.2 0.2 −
2 5 0.250 0.214 10 × 7 2.6 0.7 86.837 5.6 0.7 +
2 6 0.256 0.257 10 × 7 1.2 0.2 100.446 4.1 0.3 −
3 -2 0.314 -0.087 15 × 7 305.0 15.0 25.723 33.2 0.8 +
3 -1 0.321 -0.043 15 × 7 1205.0 22.0 12.436 45.9 0.4 +
3 0 0.326 0.000 15 × 7 1566.0 110.0 0.788 13.2 0.5 −
3 1 15 × 7 0.0 31.0 11.586 0.0 7.1 −
3 2 0.339 0.086 15 × 7 32.4 1.6 22.766 10.2 0.2 +
3 3 0.345 0.129 15 × 7 39.1 0.9 33.555 13.6 0.2 −
3 4 0.352 0.172 15 × 7 27.7 0.7 43.295 13.0 0.2 +
3 5 0.358 0.215 15 × 7 12.2 0.3 53.212 9.6 0.1 −
3 6 0.364 0.258 15 × 7 3.5 0.5 62.802 5.6 0.4 +
4 -3 0.417 -0.131 20 × 8 142.0 8.0 26.557 23.0 0.6 −
4 -2 0.423 -0.087 20 × 8 755.4 19.0 17.265 42.8 0.5 −
4 -1 0.429 -0.043 20 × 8 429.6 34.0 8.454 22.6 0.9 −
4 0 0.435 0.000 20 × 8 1917.0 23.0 0.976 16.2 0.1 +
4 1 0.441 0.043 20 × 8 45.3 7.2 8.153 7.2 0.6 −
4 2 0.448 0.085 20 × 8 43.6 2.4 15.897 9.9 0.3 −
4 3 20 × 8 0.0 1.3 23.450 0.0 2.1 +
4 4 0.461 0.173 20 × 8 2.1 0.4 30.981 3.0 0.3 −
4 5 0.467 0.215 20 × 8 3.2 0.3 38.076 4.1 0.2 +
4 6 0.473 0.259 20 × 8 1.0 1.1 45.126 2.5 1.1 −

Table S3 Observed intensity, derived form factor amplitudes, and phase factors for h = 1
to 4 at D = 57.8 Å, λr = 145Å, and γ = 98.2°.
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h k qz qr box size Iobs
hk σI correction |Fhk| σF phase

(Å−1) (Å−1) (pixels) (×103) factor
5 -3 0.525 -0.132 25 × 9 86.2 6.8 20.084 15.6 0.6 −
5 -1 0.538 -0.042 25 × 9 63.4 3.4 6.291 7.5 0.2 +
5 0 0.544 0.000 25 × 9 260.0 4.0 1.169 6.5 0.1 +
5 1 0.550 0.040 25 × 9 50.0 2.8 5.774 6.4 0.2 −
6 -4 0.628 -0.175 30 × 10 11.4 0.8 21.778 5.9 0.2 +
6 -3 0.635 -0.131 30 × 10 15.6 0.9 16.094 5.9 0.2 +
6 -2 0.641 -0.085 30 × 10 10.1 1.8 10.389 3.8 0.3 +
6 -1 0.647 0.043 30 × 10 16.3 3.0 5.193 3.4 0.3 −
6 0 0.653 0.000 30 × 10 60.2 4.7 1.389 3.4 0.1 +
6 1 0.659 0.044 30 × 10 20.4 1.5 5.217 3.9 0.1 +
6 2 30 × 10 0.0 0.6 10.208 0.0 0.9 −
6 3 0.672 0.128 30 × 10 5.9 0.3 14.657 3.5 0.1 +
6 4 0.679 0.170 30 × 10 4.2 0.3 19.309 3.4 0.1 −
7 -4 0.737 -0.174 35 × 10 40.0 1.1 17.682 10.0 0.1 −
7 -3 0.743 -0.130 35 × 10 36.0 1.8 13.060 8.1 0.2 −
7 -2 0.749 -0.085 35 × 10 15.0 7.3 8.512 4.2 0.9 +
7 -1 0.755 -0.042 35 × 10 22.0 2.3 4.145 3.6 0.2 +
7 0 0.760 0.000 35 × 10 36.0 1.8 1.569 2.8 0.1 −
8 0 0.0 3.0 1.773 0.0 0.9 +
9 -5 0.951 -0.215 35 × 10 16.0 3.0 16.549 6.1 0.5 −
9 -4 0.957 -0.173 35 × 10 16.9 3.0 13.233 5.6 0.5 −
9 -3 35 × 10 0.0 8.0 9.790 0.0 3.3 +
9 -2 0.969 -0.086 35 × 10 10.0 2.9 6.497 3.0 0.4 +
9 -1 35 × 10 0.0 6.0 3.263 0.0 1.7 −
9 0 0.981 0.000 35 × 10 17.0 10.0 2.000 2.2 0.6 +

Table S4 Observed intensity, derived form factor amplitudes, and phase factors for h = 5
to 9 at D = 57.8 Å, λr = 145 Å, and γ = 98.2° (continued from Table S3).
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oriented data, and the observability of the lamellar orders all the way to h = 9
provides three times higher resolution along the z-axis.

As discussed extensively in the previous section, oriented samples require
complex corrections, so comparison with the relatively straightforward Lorentz
correction from an unoriented sample with similar structure allows us to check our
corrections. Although the ratios of the normalized form factors vary from 0.62 to
1.38, there appears to be no sign that our corrections are flawed. We propose a
different reason why the ratios deviate so much from unity. In X-ray data from an
oriented sample, most peaks were well separated on the two-dimensional CCD,
so integrating a peak intensity was usually straightforward. In contrast, intensities
from unoriented data are collapsed onto one-dimension and overlap much more,
making separation of intensity difficult. Three such pairs of overlapping peaks are
highlighted in Table S5. We show a modified

∣∣Fun
hk

∣∣ in Table S5 where we have
shifted some intensity from the (1, 0) peak to the (1, -1) peak and some intensity
from the (2, 0) peak to the (2, -1) peak. Although there is a remaining discrepancy
for the (1, 1) reflection, the modified ratios are generally improved. Of course,
even though it makes sense to compare these unoriented and oriented samples,
one should not expect perfect agreement, especially as the ripple wavelength dif-
fers by 2.3%.
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h k q unoriented oriented ratio modified ratio
(Å−1) |Fun

hk | |Fori
hk |

∣∣Fun
hk

∣∣
1 -1 0.111 60.8 86.3 0.70 83.0 0.96
1 0 0.108 100.0 100.0 1.00 100.0 1.00
1 1 0.123 26.9 43.1 0.62 29.9 0.69
1 2 0.0
1 3 0.185 7.6 8.8 0.87 8.4 0.96
2 -2 0.224 15.1 18.0 0.84 16.8 0.93
2 -1 0.215 71.2 76.0 0.94 85.1 1.12
2 0 0.217 39.7 28.7 1.38 30.9 1.08
2 1 0.228 33.9 39.5 0.86 37.6 0.95
2 2 0.246 22.7 24.6 0.92 25.2 1.02
2 3 0.271 14.2 14.6 0.97 15.8 1.08
2 4 0.301 7.8 9.2 0.85 8.7 0.94
2 5 0.329 5.6
2 6 4.1
3 -2 0.325 29.3 33.2 0.88 32.5 0.98
3 -1 0.322 44.2 45.9 0.96 49.1 1.07
3 0 0.325 12.0 13.2 0.91 13.3 1.01
3 1 0.0
3 2 0.350 10.5 10.2 1.03 11.7 1.15
3 3 0.370 14.9 13.6 1.10 16.5 1.22
3 4 0.394 10.0 13.0 0.77 11.1 0.86
3 5 9.6
3 6 5.6

Table S5 Comparison of form factors
∣∣Fun

hk

∣∣ for the unoriented sample from Wack and
Webb3 and

∣∣Fori
hk

∣∣ from an oriented sample from this study. The ratio
∣∣Fun

hk

∣∣/ ∣∣Fori
hk

∣∣ of
unoriented to oriented form factors is shown. Three pairs of reflections with very nearly
the same q values are shown in color. A modification is shown that partitions the total
intensity of unoriented reflections with nearly the same q, as described in the text.
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S4 Additional Electron Density Map

The phase factors used to obtain the electron density map in Fig. 4 in the paper are
shown in Tables S3 and S4. They were obtained using a model. Different models
had the same signs for the phase factors for the strongest reflections with h < 6.
The second best model, as determined by the sum of the mean square deviations
from the measured |Fhk|, had the same signs. The third best model had opposite
signs for all the h = 6 reflections. That electron density map is shown next.

Fig. S10 Two dimensional electron density map calculated using the alternate set of phase
factors, in linear grayscale.
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Fig. S11 Comparison of the locus of the maximum electron density for two sets of the
phase factors. The black line is from Fig. 4, and the red line is from the alternate set of
phase factors (red line in Fig. S10).
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S5 Thin Rod Model

To understand the WAXS data we considered models of chain packing. As the pre-
vailing hypothesis is that the major arm of the ripple is like a gel phase, we begin
by reviewing gel phase models in the next subsection. We then consider the scat-
tering consequences of tilting these models out of plane by the angle ξM ≈ 10.5°
obtained from the LAXS analysis.

S5.1 Gel Phase Model

The fully hydrated gel phase of DMPC consists of hydrocarbon chains that are ba-
sically straight and cooperatively tilted by an angle θ from the bilayer normal5–8.
This is called the Lβ I phase in which each chain is tilted toward a nearest neigh-
bor chain. At lower hydration the chains tilt differently. We will also focus on
the LβF phase in this section. The chains will be modeled as thin rods. The basic
geometry of the Lβ I and LβF phases is shown in Fig. S12. Ref.7 emphasized that
the chains are tilted in the same direction in both monolayers. It also allowed for
translational offsets that we will set to zero for simplicity.

The unit cell customarily employed is indicated in Fig. S12. For the Lβ I phase,
the chains are tilted along the b direction as shown in Fig. S12 and along the a
direction for the LβF phase. It may be noted that chain packing in a plane that
is perpendicular to the chains (and therefore not parallel to the bilayer) is nearly
hexagonal; if the packing were hexagonal and if the chains had zero tilt, then in
Fig. S12, one would have b = a/

√
3, which becomes b = a/(

√
3cosθ) with tilt.

The Laue conditions for allowed reflections are

qx =
2πm

a
(38)

and
qy =

2πn
b

, (39)

where m and n are integers. Eq. 38 and 39 establish the location of possible lines
of scattering (Bragg rods). The modulation of the intensity along these rods is
derived from the square of the unit cell form factor

F(q) =
∫ a

0
dx
∫ b

0
dy
∫ L

2 cosθ

− L
2 cosθ

dzρ(r)exp(iq · r). (40)
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Fig. S12 Lattice and geometry of thin rod model. The chains are represented as solid
lines. The unit cell is drawn in the dashed lines. Top views of Lβ I , LβF , and LβL phases
(top) and side views of Lβ I and LβF (bottom) are shown. a and b are unit cell vectors, and
a > b. φ is an in-plane azimuthal angle. θ is the chain tilt angle with respect to the bilayer
normal z. Chains are tilted toward the nearest neighbor in the Lβ I phase with φ = π/2.
The Lβ I phase is observed in the fully hydrated gel phase of DMPC. In the LβF phase, the
chains are tilted toward the next nearest neightbor (φ = 0).

Our thin rods are modeled as delta functions

ρ(r) = δ (x−αz,y−β z)+δ (x−a/2−αz,y−b/2−β z) (41)

where for the general case that the chain tilt is oriented at angle φ relative to the x
axis

α = tanθ cosφ (42)

and
β = tanθ sinφ . (43)

For the Lβ I phase, φ = π/2 and for the LβF phase, φ = 0 . Continuing with the
general φ case for awhile, defining γ = αqx +βqy +qz yields

F(q) =
∫ L

2 cosθ

− L
2 cosθ

dzρ(r)eiγz(1+ e
qxa

2 +
qyb

2 ). (44)
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The phase factor 1+ eqxa/2+qyb/2 vanishes unless the sum m+ n of the Laue in-
dices (m,n) is even. Only the lowest orders (±2,0) and (±1,±1) have observable
intensity. For the simple thin rod model in Eq. 41

F(qz) =
4
γ

sin
(

γLcosθ

2

)
(45)

so the intensity |F(qz)|2 is modulated along each Bragg rod and maximum inten-
sity occurs when γ = 0 which, upon reversing the convention for the sign of qz,
means that the wide angle peaks are centered at

qmn
z = αqx +βqy = α

2πm
a

+β
2πn

b
. (46)

For the Lβ I phase with φ = π/2, one has

0 = q20
zβ I = q−20

zβ I (47)

2π

b
tanθ = q11

zβ I = q−11
zβ I =−q1−1

zβ I =−q−1−1
zβ I (48)

For the LβF phase with φ = 0

4π

a
tanθ = q20

zβF =−q−20
zβF (49)

and
2π

a
tanθ = q11

zβF = q1−1
zβF =−q−11

zβF =−q−1−1
zβF (50)

One can verify, using these equations and the Laue equations for qx and qy that
the magnitudes q±2,0 and q±1,±1 of the total scattering vectors are equal when the
packing of the chains is hexagonal in the tilted chain plane.

In q-space the powder averaged gel phase pattern consists of circles in qx and
qy centered on qx = 0 = qy and with the values of qz given in Eqs. 47–50. The
location of observed scattering in lab space k is obtained using the Ewald sphere,
centered at k = 0 with radius 2π/λ and with the q = 0 center of the q-space pat-
tern located at k = (0, |k|,0). The q-space pattern is tilted by the angle ω when the
sample is tilted relative to the laboratory frame; for grazing incidence, the qz and
kz axes are parallel and offset by 2π/λ in the ky beam direction. The direction of
scattering for the powder averaged gel phase is given by the laboratory k values
where the q-space pattern intersects the Ewald sphere. Each of the (m,n) rings
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generally intersects twice with opposite signs for kx corresponding to opposite
sides of the meridian on the CCD. The only rings that give observable scattering
in the gel phase are the (±2,0) and the (±1,±1) rings. However, some of these
six rings may coincide. For the Lβ I phase (±2,0), (±1,1) and (±1,−1) are pair-
wise identical, so there are three primary reflections on each side of the meridian.
For the LβF phase (1,±1) and (−1,±1) are pairwise identical, so there are four
primary peaks on each side of the meridian.

S5.2 Ripple Phase Model

A reasonable hypothesis is that the major arm of the ripple has similar internal
structure to a gel phase, with the major difference that the plane of the major arm
is tilted relative to the substrate. That suggests that the predicted ripple pattern
might be the same as would be obtained by tilting the in-plane powder averaged
gel phase. However, this would be a fundamental error because the operations of
tilting and in-plane powder averaging do not commute. It is necessary first to tilt
the gel phase q-space pattern and then to powder average it about the laboratory
kz axis.

Furthermore, the axis for tilting matters, so it is important to define all angles
carefully as shown in Fig. 8. We continue to define the chain tilt angle relative to
the bilayer normal by θ . The tilt of the major arm will be defined by a rotation
angle ξ about an axis in the (x,y) plane and the angle that this axis makes with
the x axis will be defined to be ζ . Starting from the q values obtained for the
various gel phases, the proper order of rotations is first to rotate the orientation of
the lattice with respect to the lab frame; this involves the standard rotation of the
(x,y) plane about the z axis by angle ζ . Then, the gel phase is rotated about the
new in-plane x axis. The rotated q value will be denoted q̃ which has components

q̃mn
z = qmn

z cosξ +qmn
x sinξ sinζ −qmn

y sinξ cosζ , (51)

q̃mn
x = qmn

x cosζ +qmn
y sinζ , (52)

and
q̃mn

y = qmn
y cosξ cosζ −qmn

x cosξ sinζ +qmn
z sinξ . (53)

As there are many domains in each X-ray exposure, the next step powder averages
each (m,n) reflection by rotating about the z axis from 0 to 2π . As for the gel
phase, the ensuing q space pattern consists of circles parallel to the (x,y) plane
with center at (0,0,qmn

z ). As noted above for the gel phase, this pattern is tilted
by ω when the substrate is tilted for our transmission experiments. Intersections
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of these circles with the Ewald sphere determines the angle of scattering in the
laboratory from which, by standard equations (Sec. S1), the qmn are determined.

The most pertinent component is q̃mn
z as this primarily determines how far re-

flections are from the meridian. As there are many variable angles, let us consider
q̃mn

z for the most pertinent special cases. It is appropriate here to consider only
ω = 0 because experimental data with ω 6= 0 are easily converted to this stan-
dard orientation. We will focus on four special cases. First, consider the in-plane
orientation ζ of the lattice to have either the longer a axis parallel (ζ = 0) or per-
pendicular (ζ = π/2) to the ripple direction. It may be noted that these two special
directions allow uniform packing of the unit cells along the finite ripple direction,
whereas the edges of the unit cells are ragged at the boundaries of the major arm
for other values of ζ . Also, these two directions are symmetrical. However, as
the lipid molecules are chiral and as there is likely disorder at the boundaries of
the major arm, one cannot eliminate general ζ angles a priori. We will also fo-
cus on the special orientations of the tilt direction that correspond to the Lβ I gel

phase (φ = π/2), which we will henceforth call Pζ

β I phases, and the LβF gel phase

(φ = 0), to be called Pζ

βF phases, recognizing, of course, that we are only model-
ing the major arm of the Pβ ′ ripple phase. It will also be convenient to simplify
to hexagonal packing of the hydrocarbon chains as the orthorhombic symmetry
breaking that makes q20

total 6= q11
total is small; then, b = a/(

√
3cosθ) for the Pζ

β I

phases and b = acosθ/
√

3 for the Pζ

βF phases. These simplifications allow us to
focus on the chain tilt angle θ and the tilt ξ of the major side for four cases of
(φ ,ζ ) and the observable orders (±2,0) and (±1,±1). Table 2 shows the values
of qmn

z , all divided by 2π/a.
Importantly, tilting the gel phase to form putative ripple major arms breaks

the degeneracy of many of the gel phase rings. Most notably, all the degeneracies
are broken in the Pζ=π/2

β I special case whereas none are broken in Pζ=π/2
βF . The

magnitude of the qz symmetry breaking is typically (4π/a)sinξ ≈ 0.32 Å−1 for
ξ = 10.5°. As ∆qz ≈ 0.4Å, broken symmetry Bragg rods would be predicted to
overlap considerably. This could blur them into apparently single Bragg rods, but
with larger ∆qz than the intrinsic value of each Bragg rod.
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(±2,0) (±1,1) (±1,−1)
Lβ I 0

√
3sinθ −

√
3sinθ

Pζ=0
β I 0

√
3sin(θ −ξ ) −

√
3sin(θ −ξ )

Pζ=π/2
β I ±2sinξ

√
3sinθ cosξ ± sinξ −

√
3sinθ cosξ ± sinξ

(±2,0) (1,±1) (−1,±1)
LβF ±2tanθ tanθ − tanθ

Pζ=0
βF ±2tanθ cosξ tanθ cosξ ∓

√
3sinξ/cosθ −(tanθ cosξ∓

√
3sinξ/cosθ)

Pζ=π/2
βF ±2(tanθ cosξ + sinξ ) tanθ cosξ + sinξ −(tanθ cosξ + sinξ )

Table S6 qmn
z divided by 2π/a. Same as Table 2 in the paper.
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S6 WAXS Data Reduction

We estimated the width of the Bragg rod I by fitting the intensity profile in qr to
two Lorentzians as shown in Fig. S13 (left). The fit resulted in the FWHM ∆qr
= 0.025 Å−1 centered at 1.478 Å−1 and ∆qr = 0.140 Å−1 centered at 1.464 Å−1.
A fit with a single Lorentzian was not very good, and a broader Lorentzian was
necessary to produce a reasonable fit.

We also fitted to two Lorentzians the peak profile in qr at qz = 0.12 Å−1,
which includes both the Bragg rod I and II. The fit was only successful within a
limited range in qr. This could be due to an underlining broad peak like the one
shown in Fig. S13 (left). To investigate this possibility, we fitted the same peak
profile with three Lorentzians with fixed widths as shown in Fig. S13 (right). Two
of the Lorentzians had fixed widths of 0.025 Å−1 representing sharp peaks, and
the last one had a fixed width of 0.14 Å−1 representing a broad peak. Fig. S13
(right) shows an excellent fit obtained over a wide range in qr, suggesting that
the estimated peak widths are not unreasonable. The widths and positions of the
observed peaks are summarized in Table 1.
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Fig. S13 (left) Peak profile in qr at qz = 0.2 Å−1 of the GIWAXS pattern shown by
open circles in Fig. 3 (left), fitted to the sum of two Lorentzians. The FWHM and center
obtained were 0.025 Å−1 and 1.478 Å−1 (green) and 0.140 Å−1 and 1.464 Å−1(red),
respectively. The solid blue line is a sum of the two Lorentzian fits. (right) Peak profile in
qr at qz = 0.12 Å−1 fitted to the sum of three Lorentzians. The FWHM were constrained
to 0.025 Å−1 (blue), 0.025 Å−1 (green), and 0.14 Å−1 (red). The centers were found to be
1.485 Å−1 (blue), 1.458 Å−1 (green), and 1.458 Å−1 (red). The solid cyan line is a sum
of the three Lorentzian fits.
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S7 Possible Connection to Simulations

Even though our WAXS data do not support interdigitation in the minor side for
our samples, it is interesting that a perturbation of our structure in Fig. 9 could
lead to a structure consistent with simulations,9–11 as shown in the next figure.
This suggests that interdigitation in the minor arm might be eliminated by modest
modifications in force fields to correspond to our experimental conditions.
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Fig. S14 The left sketch repeats the chain packing proposed in Fig. 9 in the text, but with
the minor arm in the center. In the right sketch, the left sketch has been separated in the
middle of the minor arm and translated so as to provide a gap into which interdigitated
chains, shown in magenta, have been inserted.
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