Anionic Deep Cavitands Control the Adhesion of Unmodified Proteins at a Membrane Bilayer

Yoo-Jin Ghang,[†] Lizeth Perez,[†] Melissa A. Morgan,[†] Fang Si,[‡] Omar M. Hamdy,[†] Consuelo N. Beecher,[†] Cynthia K. Larive,[†] Ryan R. Julian,[†] Wenwan Zhong,[†] Quan Cheng[†] and Richard J. Hooley[†]*

[†]Department of Chemistry, University of California, Riverside, CA 92521, United States [‡]Donghua University, College of Chemistry, Chemical and Biological Engineering, Shanghai, 201620, China

richard.hooley@ucr.edu

Electronic Supplementary Information

1. SPR Binding Analysis (sensorgrams not shown in the text)

1) Bovine Serum Albumin (BSA)

Figure S-1. SPR sensorgrams of the binding event between POPC:cavitand 1 and BSA in 20 mM PBS (left) or 100 mM PBS (right).

b. POPC:cavitand 2 bilayer

Figure S-2. SPR sensorgrams of the binding event between POPC:2% cavitand 2 and BSA in water (left) or 100mM PBS (right).

c. POPC:sodium palmitate bilayer

Figure S-3. SPR sensorgram of the binding event between POPC:sodium palmitate and BSA in water.

2) Cytochrome c (cyt c)

a. POPC:cavitand 1 bilayer

Figure S-4. SPR sensorgram of the binding event between POPC:cavitand 1 and cyt c in 100 mM PBS.

b. POPC:cavitand 2 bilayer

Figure S-5. SPR sensorgram of the binding event between POPC:2% cavitand 2 and cyt c in 100 mM PBS.

3) Myoglobin

a. POPC:cavitand 1 bilayer

Figure S-6. SPR sensorgrams of the binding event between POPC:cavitand 1 and myoglobin in water (left) or 100 mM PBS (right).

b. Control experiment (POPC bilayer alone)

Figure S-7. SPR sensorgram of the binding event between POPC membrane and myoglobin in water.

c. POPC:cavitand 2 bilayer

Figure S-8. SPR sensorgrams of the binding event between POPC:2% cavitand **2** and myoglobin in water (left) or 100 mM PBS (right).

4) Trypsin

a. POPC:cavitand 1 bilayer

Figure S-9. SPR sensorgrams of the binding event between POPC:cavitand 1 and trypsin in water (left) or 100 mM PBS (right).

b. Control experiment (POPC bilayer alone)

Figure S-10. SPR sensorgram of the binding event between POPC membrane and trypsin in water.

5) TPCK-trypsin

a. POPC:cavitand 1 bilayer

Figure S-11. SPR sensorgrams of the binding event between POPC:cavitand 1 and TPCK-trypsin in water (left) or 100 mM PBS (right).

b. Control experiment (POPC bilayer alone)

Figure S-12. SPR sensorgram of the binding event between POPC membrane and trypsin in water.

2. Capillary Electrophoresis Binding Analysis

Figure S-13. Electropherograms for cyt *c* incubated with cavitand **1** as running buffer at 191 nm, $[1] = 3-30 \mu$ M, [Cyt *c*] = 3 μ M).

Sample ID (Cavitand: cyt C molar ratio)	Mobility 1	Mobility 2	Mobility 3	Average Mobility	Stdev Mobility
Cyt C control	-4.64E-08	-4.59E-08	-4.62E-08	-4.62E-08	2.43E-10
3uM:3uM	-4.26E-08	-4.20E-08	-4.16E-08	-4.21E-08	4.60E-10
7.5uM:3uM	-4.03E-08	-4.00E-08	-4.07E-08	-4.03E-08	3.42E-10
15uM:3uM	-3.92E-08	-3.98E-08	-3.90E-08	-3.94E-08	3.98E-10
22.5uM:3uM	-3.98E-08	-3.99E-08	-3.91E-08	-3.96E-08	4.36E-10
30uM:3uM	-3.92E-08	-3.98E-08	-3.99E-08	-3.97E-08	3.64E-10

Figure *S***-14.** Mobility shift of cyt *c* vs. [1] and binding constant calculation: $K_d = 2.5 \times 10^{-6} M$.

Figure S-15. Electropherograms for cyt *c* incubated with cavitand **1** and POPC lipids as running buffer at 191 nm, $[1] = 3-30 \ \mu\text{M}$, $[Cyt c] = 3 \ \mu\text{M}$, $[POPC] = 15.8 \ \mu\text{M}$).

Figure S-16. Mobility shift of cyt *c* vs. [1] in the presence of POPC lipid vesicles and binding constant calculation: $K_d = 7.59 \times 10^{-6} M$.

3. Trypsin digestion on bioreactive surface

a) Unreacted Oxidized Insulin chain B

Figure S-17. ESI-MS analysis of oxidized insulin chain B.

b) Trypsin digestion of Insulin B in solution

Figure S-18. ESI-MS analysis of trypsin (7.5 μ M) digestion of insulin chain B (150 μ M) for 1 h at 298 K in aqueous solution.

c) Trypsin digestion of Insulin B at the Bioreactive surface

Figure S-19. SPR sensorgram of trypsin digestion of insulin chain B for 1 h at 298 K at the POPC:1:trypsin surface.

Figure S-20. SPR sensorgram of trypsin digestion of insulin chain B for 10 min at 298 K in SPR.

Figure S-21. HPLC and ESI-MS analysis of trypsin digestion of insulin chain B for 1 h at 298 K in SPR. a) HPLC-ESI mass spectra of collected fractions from HPLC: b) fraction 1; c) fraction 2; and d) fraction 3.

Figure S-22. ESI-MS analysis of trypsin digestion of insulin chain B for 10 min in SPR.

d) Surface Reusability: multiple trypsin digestions at the same surface

Figure S-23. SPR sensorgram of multiple trypsin digestions of insulin chain B for 1 h at 298 K in SPR.

Figure S-24. ESI-MS analysis of multiple trypsin digestions of insulin chain B for 1 h at 298 K in SPR: a) first digestion, b) second digestion.

e) Inhibition of trypsin digestion by addition of benzamidine hydrochloride

Figure S-25. SPR sensorgram of trypsin digestion of insulin chain B with 100 mM benzamidine hydrochloride for 1 h at 298 K in SPR.

Figure S-26. ESI-MS analysis of trypsin digestion of insulin chain B with 100 mM benzamidine hydrochloride for 1 h at 298 K in SPR.

f) TPCK-trypsin digestion

Figure S-27. ESI-MS analysis of TPCK-trypsin (7.5 μ M) digestion of insulin chain B (150 μ M) for 1 h at 298 K in aqueous solution.

Figure S-28. SPR sensorgram of TPCK-trypsin digestion of insulin chain B for 1 h at 298 K in SPR.

Figure S-29. HPLC analysis of TPCK-trypsin digestion of insulin chain B for 1 h at 298 K in SPR.

Figure S-30. ESI-MS analysis of TPCK-trypsin digestion of insulin chain B for 1 h at 298 K in SPR.

4. CD Analysis of injected protein structure

Figure S-31: CD spectrum of 2 µM BSA in water (solid line) or 100 mM PBS (dotted line).

Figure S-32: CD spectrum of 2 µM cyt c in water (solid line) or 100 mM PBS (dotted line).

Figure S-33: CD spectrum of 2 µM myoglobin in water (solid line) or 100 mM PBS (dotted line).