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Supplemental Material
Mindful that some of the computational results may not

have been entirely expected, a more detailed description of the
computation follows. The material here is an amplification of
the material in the paper in the section Simulations; additional
material has been interpolated:

A starting point for simulations is the Langevin equation

m
du(t)

dt
=− fou(t)+F (t), (1)

which is a heuristic approximation introduced a century ago as
a description of the diffusion of mesoscopic particles in sim-
ple fluids. In this equation, u(t) is the time-dependent particle
velocity, m and fo are the probe’s mass and drag coefficient,
and F (t) is the thermal ”random” force on the particle. fo
and F (t) are interlinked by the fluctuation-dissipation theo-
rem. The thermal force is taken to have a very short corre-
lation time, so that impulses

∫
F (t)dt supplied to the particle

by the fluid over nonoverlapping time intervals are very nearly
independent from each other.

We first implemented Eq. 1 as a numerical simulation. F (t)
was created with a pseudorandom number generator having a
Gaussian distribution. We confirmed that x(t) from our sim-
ulation has the properties expected1,2 for a solution to the
Langevin equation. In particular, we found a Gaussian dis-
tribution for P(∆x, t), with a mean-square displacement that
increased linearly with t.

This section discusses an adequate minimal analytic model
for a complex fluid, and our computational implementation
of it. Our results are based on the Mori-Zwanzig equation3,
which is an exact rearrangement of the physically-exact Liou-
ville equation for the time evolution of all classical systems.
The Mori-Zwanzig equation3 provides

m
du(t)

dt
= iΩu(t)−

∫ t

−∞
dsϕ(s)u(t − s)+FP(t). (2)

Here u(t) is the dynamic variable of interest, in this work the
probe velocity. For our systems Ω vanishes by time reversal
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symmetry. FP(t) is the Mori-Zwanzig projected force. The
Mori-Zwanzig theorem gives an exact expression for FP(t) in
terms of the system Hamiltonian. The Mori memory kernel is

ϕ(s) = ⟨FP(0)FP(s)⟩/⟨(u(0))2⟩. (3)

The Mori-Zwanzig equation looks a great deal like the
Langevin equation. However, the Langevin equation is a
heuristic approximant. The Mori-Zwanzig equation is an ex-
act result of classical and statistical mechanics. In particular,
Mori-Zwanzig theorem gives an exact – albeit difficult to eval-
uate – formula for the memory kernel ϕ(s).

Equations 1 and 2 are fundamentally different. Eq 1 is often
interpreted as a stochastic differential equation. Eq 2 is a con-
ventional differential equation: It is Newton’s second law of
motion, rewritten by partitioning the forces between Ω, ϕ(s),
and FP(t). FP(t) is determined by the positions and motions
of the other particles in the system, so it is continuous, differ-
entiable, and integrable. Features associated with integrating
stochastic differential equations4 do not arise with the Mori-
Zwanzig equation.

FP(t) is often approximated as having a correlation time
short compared to the time scales of interest. With this approx-
imation, FP(t) is approximated by a Markoff process, while
ϕ(s) is approximated as being very nearly ∼ δ (s), so that
the Mori-Zwanzig equation is approximated by the Langevin
equation. For a complex fluid, these approximations are lose
all the interesting behavior. In interesting complex fluids, re-
laxations occur on multiple observable time scales. Probe mo-
tions are observed on the time scales on which relaxations oc-
cur. On these time scales, FP(t) is not even approximately a
Markoff process; it instead has prolonged correlations related
to the prolonged correlations in the surrounding fluid.

As noted in the discussion, it is inadequate to model FP(t)
as a single random process having long-lived correlations.
Models of this sort lead to Gaussian forms for P(∆x, t) and
are thus inconsistent with experiment. A correct solution was
developed by Tateishi, et al.5. Just as a probe diffusing in
a polymer solution experiences uncorrelated interactions with
solvent and polymer molecules, so also does Tateishi’s gen-
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eralized Langevin equation contain two uncorrelated noise
sources ξ (t) and η(t). In Tateishi’s calculation, the time cor-
relation functions of ξ (t) and η(t) were a delta function and a
power law. Because ξ (t) and η(t) were taken to be uncorre-
lated, the corresponding memory kernel was

ϕ(τ) = ⟨ξ (t)ξ (t + τ)⟩+ ⟨η(t)η(t + τ)⟩. (4)

ξ (t) and η(t) have different distributions, so their sum is not
a sum of identically distributed random variables; the Cen-
tral Limit Theorem and Doob’s Theorem do not apply to their
sum. Tateishi’s analytic calculation of ⟨(∆x(t))2⟩, based on
this model, found distinct diffusive and subdiffusive regimes.

Our molecular-dynamics computer calculations differ from
Tateishi, et al.’s in that we used an exponential memory, we
calculated P(∆x, t) itself, and furthermore calculated multiple
statistical characterizations and transforms of P(∆x, t). The
principal challenge in our calculations was in generating an
FP(t) with well-defined correlations, together with a mutu-
ally consistent ϕ(t). This problem was in principal solved by
Mori with his orthogonal hierarchy of thermal forces scheme6.
The basis of the hierarchy is Mori’s observation that the Mori-
Zwanzig equation is valid for an arbitrary dynamic mechanical
variable, the thermal force FP(t) is itself a dynamic mechan-
ical variable, so therefore the time evolution of FP(t) can be
calculated with a new Mori equation. The new Mori equa-
tion generates the time evolution of FP(t) in terms of a second
Mori memory kernel and a second thermal force. Each ther-
mal force FP(t) can in turn be written as being generated by a
higher-order memory kernel and thermal force. The orthogo-
nal hierarchy automatically leads to a mutual consistency be-
tween each ϕ and the corresponding FP(t).

Here we used Mori’s orthogonal hierarchy purely as a math-
ematical device to generate the needed FP(t) and consistent
ϕ(t). Our approach is to truncate the hierarchy at some order,
and use the highest-order equation as a generalized Langevin
equation that generates projected forces and corresponding
memory functions having the desired temporal calculations.

In the following calculations a complex fluid is modelled as
supplying two independent projected forces. One is a rapidly-
fluctuating solvent force corresponding to the simple hydro-
dynamic drag − fov on the probe. The other is a slowly-
fluctuating projected force corresponding to polymer matrix
motions. Because these are physical forces, their time inte-
grals are well-behaved. The presence of two distinct projected
forces is critical to obtaining our results.

Simulations were run on an 448 core Nvidia Tesla C2075
processor (nominal maximum single-precision speed, 1.15
teraflops) using the Portland Group PGFortran optimizing
compiler for Fortran 90. Individual simulations ran for ∼
5 · 109 particle displacement steps. The direct outcomes of
each simulation were a velocity trajectory ui and a position

trajectory xi, i being the discrete time variable. u2
i was con-

firmed to have no secular drift over the course of a simulation,
confirming that the system remained in thermal equilibrium.

Throughout the simulations, changes in the position were
computed from the ui as

xi = xi−1 +ui∆t. (5)

Notional units such that ∆t = 1 were used throughout.
The final software test was a simulation of the Langevin

equation. The Langevin equation for the velocity was used in
its discrete-time form for a unit-mass particle

ui = ui−1 − foui−1∆t +Xi∆t (6)

Here i labels the time steps. Xi is a net impulse, the integral
of the projected force over the time interval between moments
i− 1 and i. In the Langevin simulation, Xi and X j for i ̸= j
were independently generated Gaussian random variables.

For the complex fluid simulation, we added to the Langevin
equation a second projected force, a projected force having
an extended correlation time, and its corresponding memory
function. The long-lived projected force was constructed as a
sum over Markoff sources Yj, the effect of these sources being
propagated forward from time j to time i by propagators Ci− j,
namely

FP
i =

i

∑
j=0

YjCi− j (7)

The propagators Ci− j have a range N, meaning that they are
only non-zero for | i− j |< N. During the course of a sim-
ulation i ≫ N. The FP

i are constructed as sums of Gaussian
random processes, so the probability distribution of FP

i must
also be a Gaussian random process, as was confirmed in the
simulations. However, Ci− j is non-zero for i− j ̸= 0, so the
long-lived FP

i are cross-correlated; the long-lived FP
i do not

follow a Markoff process.
From eq 3, the Mori kernel for the second projected force

may be written in terms of the propagator as

Mb−a ≡ ⟨FP
a FP

b ⟩=

⟨
a

∑
i=1

b

∑
j=1

YiCa−iYjCb− j

⟩
, (8)

with a ≫ N and b ≫ N. For b−a ≥ 0 and

⟨YiYj⟩= m2
1δi− j, (9)

with δi− j being the Kronecker delta, Mb−a simplifies to

M j = m2
1

N

∑
i=0

CiCi+ j. (10)

Our propagator was an exponential

Ci = f1 exp(−ai)/Q (11)
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with f1 being the strength of the propagator, the normalizing
factor Q being arranged so that

f1 =
N

∑
i=0

Ci. (12)

By direct calculation, for an exponential propagator the mem-
ory kernel is also an exponential, namely

M j =

[
f 2
1

N

∑
i=0

exp(−2ai)/Q2

]
exp(−a j) (13)

the quantity in brackets being a constant independent of j.
We also tested propagators that initially followed eq 11, but

at times i > a−1 followed a power law

Ci = f2(ia)ν/(Qe), (14)

with f2 chosen so that Ci was continuous at the crossover
point.

The discrete-time Mori equation finally becomes

ui = (ui−1 +Xi +
N

∑
j=0

(C jYi− j −M jui− j))(1− fo). (15)

The ui are driven by two different statistical processes, one
having an extended memory, so neither the Central Limit The-
orem (which requires for the random force a sum of identical
processes) nor Doob’s Theorem (which refers to Markoff pro-
cesses) is applicable to the behavior of the ui.

Having generated the statistical processes ui and xi for 5
billion steps (plus initial thermalization), characterizations of
these processes followed. For ease of reading, the characteri-
zations are written with time as the continuous variable t. For
each system we calculated the displacement distribution func-
tion P(∆x, t), the velocity-velocity correlation function

CVV (t) = ⟨u(0)u(t)⟩, (16)

and the acceleration-acceleration correlation function

CAA(t) = ⟨(u(t2)−u(t1))(u(t4)−u(t3))⟩. (17)

Here ∆x(t) = x(τ + t)− x(τ). The function CAA(t) was evalu-
ated for t1 ≤ t2 ≤ t3 ≤ t4, with t = t3 − t2, while keeping t2 − t1
and t4 − t3 small. P(∆x,1) gives the distribution of xi − xi−1,
which is the same as the distribution of the ui. The ui had the
expected Gaussian distribution.

The velocity-velocity correlation functions are long lived,
so errors in eq 5 due to time being discretized were small. For
the simple Langevin model, the velocity-velocity correlation
function was accurately exponential, demonstrating that fo∆t
was not too large. The time-dependent mean-square displace-
ment

K2(t) = ⟨(∆x(t))2⟩ (18)

was computed directly, not from P(∆x, t). Plots of P(∆x, t)
were generated at each t by binning values of P(∆x, t) using
0.1

√
(K2(t)) as the bin width.

Unless P(∆x, t) is a Gaussian, characterizing P(∆x, t) re-
quires all even central moments K2n of ∆x. We calculated
the time-dependent K4 and K6 from the simple moments
⟨(∆x(t))n⟩ as

K4 = (⟨(∆x(t))4⟩−3(⟨(∆x(t))2⟩)2)/(⟨(∆x(t))2⟩)2 (19)

and
K6 = (⟨(∆x(t))6⟩−15⟨(∆x(t))4⟩⟨(∆x(t))2⟩

+30⟨(∆x(t))2⟩3)/(⟨(∆x(t))2⟩)3. (20)

The odd central moments K1, K3, and K5 of P(∆x, t) were con-
firmed by direct calculation to vanish, as expected from sym-
metry.

The intermediate scattering function

g(1s)(q, t) = ⟨cos(q∆x(t))⟩ (21)

was determined for a wide range of q and t. As an indication
of the simulation’s accuracy, the relaxation of g(1s)(q, t) could
generally be followed until g(1s)(q, t)/g(1s)(q,0) < 3 · 10−4,
corresponding to a signal-to-noise ratio ca. 3000. Such pre-
cision is not always found in experimental studies. In the
subfield of microrheology, it is sometimes presumed that
g(1s)(q, t) is related to the mean-square displacement via

g(1s)(q, t) = exp(−q2⟨(∆x(t))2⟩/2), (22)

as is the case for particles described by the Langevin equation.
This hypothesis was tested by plotting the directly-calculated
(eq 21) and inferred (eq 22) values for g(1s)(q, t) against each
other for various q and t.
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