Electronic Supplementary Information (ESI)

Marked Difference in Self-assembly, Morphology, and Cell Viability of Positional Isomeric Dipeptides Generated by Reversal of

Sequence

Sudeshna Kar and Yian Tai*
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Taipei 10607, Taiwan.
*Corresponding Author:
Prof. Yian Tai
Phone: +886-2-2737-6620, Fax: +886-2-2737-6644
E-mail: ytai@mail.ntust.edu.tw

Table of Conents

Details of synthesis and characterization of peptides	Page S3-S6
FE-SEM images of methanolic solutions of peptide 1 at different concentrations	Fig $S 1$
Different types of microscopic analysis showing the formation of tubular structures of peptide 2	Fig. $S 2$
Size distribution profile in DLS study of peptide 2	Fig. $S 3$
FE-SEM images of peptides 1 and 2, obtained after thermal treatment	Fig. $S 4$
In case of peptide $\mathbf{1}$ formation of different nano-morphologies from different solvents	Fig. $S 5$
Self-assembly pattern of peptide 1	Fig. $S 6$
ORTEP diagram of peptide 2 backbone	Fig. $S 7$
Selected backbone torsion angles (${ }^{\circ}$) for peptides $\mathbf{1}$ and 2	Table $S 1$
Intermolecular hydrogen bonds parameters for peptides 1 and 2	Table $S 2$
Crystallographic refinement details for peptide 2	Fig. $S 8$
X-ray crystallographic structure of peptide 2	Fig. $S 9$
Schematic representation of formation of different nano-structures	Table $S 4$
Solid state FT-IR spectral analysis of as synthesized peptide 2 and its tubular form	

Detail synthesis of Boc-Aib-mABA-OMe (Peptide 2)

Synthesis of Boc-Aib-OH

The amino acid α-aminoisobutyric acid ($5 \mathrm{~g}, 48.54 \mathrm{mmol}$) was suspended in a $1: 1$ tetrahydrofuran (THF) water mixture. Solid $\mathrm{NaHCO}_{3}(12.23 \mathrm{~g}, 145.62 \mathrm{mmol})$ was added and Boc-anhydride (11.63 $\mathrm{mL}, 53.39 \mathrm{mmol}$) was added to it. The reaction mixture was stirred at room temperature over night. After 24 h , the THF layer should be driven out with the help of vaccum pump. The aqueous layer was cooled in an icebath, acidified with 2 M HCl and extracted with ethylacetate. The organic layer was washed with excess of water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo producing a white solid. Yield: $8.0 \mathrm{~g}(81.21 \%)$.

Synthesis of the peptide Boc-Aib-mABA-OMe (Peptide 2)

Boc-Aib-OH ($0.65 \mathrm{~g}, 3.25 \mathrm{mmol}$) was dissolved in dimethylformamide (DMF; 10 mL). m-ABA-OMe ($1.40 \mathrm{~g}, 6.5 \mathrm{mmol}$) obtained from its hydrochloride was added followed by DC DCC $(0.97 \mathrm{~g}, 4.87 \mathrm{mmol})$ and $\mathrm{HOBT}(0.42 \mathrm{~g}, 3.25 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 day. The precipitated dicyclohexylurea (DCU) was filtered and diluted with ethyl acetate $(80 \mathrm{~mL})$. The organic layer was washed with excess of water, $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{X} 30 \mathrm{~mL})$, $1 \mathrm{M} \mathrm{Na} 2 \mathrm{CO}_{3}$ solution (3 X 30 mL) and again with water. The solvent was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo, giving a light yellow gum. Purification was done using silica gel as stationary phase and an ethyl acetate-petroleum ether mixture as the eluent. Yield: 0.95 g (88.78\%). M.p $=138^{\circ} \mathrm{C}$.

Single Crystal X-Ray Diffraction

Diffraction data for peptide 2 grown by slow evaporation of methanol was collected with $\mathrm{MoK} \alpha$ radiation at 100 K using the Bruker SMART CCD diffractometer System. Data analyses were carried out with the Bruker SAINT program. The structures were solved using direct methods with the SHELXL-2013 program (Sheldrick, 2013). For peptide 1 and 2 the structures were refined on F^{2} using SHELXL-2013 (Sheldrick, 2013) to R1 $=0.039$; wR2 $=0.103$ for 4367 reflections with $I>2 \sigma(I)$ for peptide 1 (Chem. Commun., 2014, 50, 2638-2641), and to R1=0.052; wR2 $=0.097$ for 2530 reflections with $I>2 \sigma(I)$ for peptide 2 , respectively. Crystallographic details of peptide $\mathbf{1}$ and $\mathbf{2}$ have been deposited at the Cambridge Crystallographic Data Centre; reference CCDC no of peptide 1 is 949965 (Chem. Commun., 2014, 50, 2638-2641) and that of peptide $\mathbf{2}$ is 992075 . These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk).

Detail characterization of Boc-Aib-mABA-OMe (Peptide 2)

Mass spectrum of peptide 2

Boc-Aib-m-ABA-OMe

${ }^{1} \mathrm{H}$ NMR spectrum of peptide 2 in DMSO-D6 (300 MHz)

${ }^{13} \mathrm{C}$ NMR spectrum of peptide 2 in DMSO-D6 (75 MHz)

DEPT-135 spectrum of peptide 2 in DMSO-D6 (75 MHz)

Fig. S1 FE-SEM images of methanolic solutions of peptide at concentrations of: (a) 10 mM ; (b) 5 mM , arrows indicate the fused spherical structures and (c) 1 mM solutions. In the insets of (a), (b) and (c) the TEM images show the hollow nature of the spherical structures

Fig. $\boldsymbol{S} \mathbf{2}$ Different types of microscopic analysis showing the formation of tubular structures selfassembled from methanolic solutions. SEM images of peptide at concentrations of: (a) 1 mM , (b) 5 mM , and (c) 10 mM solutions. In the insets of (a), (b) and (c) the TEM images show the hollow nature of the nanotubes

Fig. $\boldsymbol{S 3}$ Size distribution profile in DLS study of peptide 2 showing hydrodynamic diameter, 122.58 nm , with polydispersity index, 1.00

Fig. $\boldsymbol{S} 4$ FE-SEM images of peptides $\mathbf{1}$ and 2, obtained after thermal treatment for 1 hr in a convection oven at a constant temperature of $50^{\circ} \mathrm{C}$ [(a) peptide 1 and (d) peptide 2], $170^{\circ} \mathrm{C}$ [(b) peptide 1 and (e) peptide 2] and $200^{\circ} \mathrm{C}$ [(c) peptide 1 and (f) peptide 2]

Fig. $\boldsymbol{S 5}$ TEM images of peptide 2 forming nano tubes from (a) chloroform-methanol ($1: 1 \mathrm{v} / \mathrm{v}$), (b) toluene, (c) from ethyl-acetate, (d) CHCl_{3}-Petroleum ether (1:1 v/v), (e) acetone and (f) dimethylformamide solvent.

Fig. S6 X-ray crystallographic structure of peptide 1; (a) peptide molecules self-assemble to form β-sheet like structure in $a b$ plane; (b) β-sheet like structures are stacking layer by layer in $b c$ plane (Taken from Chem. Commun. 2014, 50, 2638-2641)

Fig. $\boldsymbol{S} 7$ ORTEP diagram of peptide 2. Percentage probability of the ellipsoids is 50%

Table S1 Selected backbone torsion angles (${ }^{\circ}$) for peptides $\mathbf{1}$ and $\mathbf{2}$

Selected backbone torsion angles $\left({ }^{\circ}\right)$ for peptide 2

N1-C14-O6-C15	178.2(3)	C2-C1-N2-C10 (ϕ_{2})	-2.4(6)
C11-N1-C14-O6 (w_{0})	-164.3(3)	C3-C2-C1-N2 (θ_{l})	-179.9(4)
C10-C11-N1-C14(ϕ_{1})	-61.2(4)	C7-C3-C2-C1 (θ_{2})	178.9(3)
N2-C10-C11-N1 (ψ_{1})	-42.2(4)	O1-C7-C3-C2 (ψ_{2})	-10.3(5)
C1-N2-C10-C11 (w_{1})	176.2(3)		

Selected backbone torsion angles $\left({ }^{\circ}\right)$ for peptide 1 (Taken from Chem. Commun. 2014, 50, 26382641)

N1-C5-O1-C4	-179.25(10)	N2-C12-C8-C7 $\left(\psi_{1}\right)$	22.87(13)
C6-N1-C5-O1 (w_{0})	-177.19(9)	C13-N2-C12-C8 (w_{1})	-178.94(8)
C7-C6-N1-C5 ϕ_{1})	24.31(15)	C14-C13-N2-C12 (ϕ_{2})	-55.80(11)
C8-C7-C6-N1 (θ_{1})	177.31(8)	O5-C14-C13-N2 (ψ_{2})	145.55(8)
C12-C8-C7-C6 (θ_{2})	177.78(8)		

Table $\boldsymbol{S} \mathbf{2}$ Intermolecular hydrogen bonds parameters for peptides $\mathbf{1}$ and $\mathbf{2}$

Peptide 2

Type	N....O/(Á)	H....O/(Á)	O.... $\mathrm{H}-\mathrm{N} /\left({ }^{\circ}\right.$)
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(5)^{a}$	2.915(4)	2.06(4)	164(3)
$\mathrm{N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(4)^{a}$	$2.846(5)$	2.13(4)	143(3)

Symmetry elements: ${ }^{a} 1.5-\mathrm{x}, \mathrm{y}, 1 / 2+\mathrm{z},{ }^{b} 1.5-\mathrm{x}, \mathrm{y}, 1 / 2+\mathrm{z}$

Peptide 1

Type	N....O/(Á)	H....O/(Á)	O.... $\mathrm{H}-\mathrm{N} /\left({ }^{\circ}\right.$)
$\mathrm{N}(2)-\mathrm{H}(2) \ldots \mathrm{O}(2)^{a}$	2.943(1)	2.08(2)	176(1)
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(3)^{b}$	2.934(1)	2.10(2)	160(1)

Symmetry elements: ${ }^{a}-\mathrm{x}, \mathrm{y},-\mathrm{z}+1 / 2 ;{ }^{b}-\mathrm{x}+1 / 2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.

Table $\boldsymbol{S 3}$ Crystallographic refinement details for peptide 2

Crystallographic refinement details	Peptide 2
Crystal Colour	Colourless
Chemical Formula	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula Weight (g)	336.37
Crystal System	orthorhombic
Space group	P c a 21
Z	4
a (\AA)	16.161(2)
b (\AA)	12.5161(16)
c (\AA)	$9.3110(12)$
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$Y\left({ }^{\circ}\right)$	90.00
$\mathrm{V}\left(\AA^{3}\right)$	1883.3(4)
density $\left(\mathrm{gcm}^{-3}\right)$	1.186
Temperature (K)	100
Unique reflections	3973
reflections $\mathrm{I}>2 \sigma(\mathrm{I})$	2530
№ Parameters	228
GoF	0.977
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$, all	0.0526, 0.1044
$w \mathrm{R}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$, all	0.0985, 0.1172
residual electron density (e/ \hat{A}^{3})	0.264 and -0.232

Fig. $\boldsymbol{S 8}$ X-ray crystallographic structure of peptide 2; (a) peptide molecules self-assemble in $b c$ plane to form a β-sheet structure. The closest π-stacking distance between two aromatic rings is $4.587 \AA$ (b) Peptide molecules again self-assemble in $a b$ plane to form another zipper like structure; and (c) the closest π-stacking distance between two diagonally situated aromatic rings is $5.527 \AA$

In case of peptide $\mathbf{1}$ the formation of nanovesicles by peptide $\mathbf{1}$ may be envisaged by considering the wrapping of the β-sheet-like layers in two different directions simultaneously (Fig. S9). We assumed in our previous study, that thermal treatment or interaction with $-\mathrm{CH}_{3}$ functional group on different SAM surfaces or in presence of different solvents, like acetone, ethyl acetate, DMF and chloroform-petroleum ether ($1: 1 \mathrm{v} / \mathrm{v}$), the two-ways wrapping of β-sheet layers opens up and they are arranged side by side to form the fibrils/ribbons (Fig. S9). Again in chloroform-methanol solvent mixture ($1: 1 \mathrm{v} / \mathrm{v}$) and aromatic solvent like toluene β-sheet-like layers may fold in only one direction to form the nano-tubes (Fig. S9). But under all the variable conditions peptide 2 maintains the one way wrapping of the sheet-like structures.

Fig. $\boldsymbol{S 9}$ Schematic representation of formation of different nano-structures

Table $\boldsymbol{S 4}$ Solid state FT-IR spectral analysis of as synthesized peptide $\mathbf{2}$ and its tubular form

	$\mathrm{N}-\mathrm{H}$ stretching vibration \&overtone of the N-H bending vibration $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{C}=\mathrm{O}$ stretching vibration in ester group $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{C}=\mathrm{O}$ stretching vibrations of the peptide
urethane,amide I, and			
bending peaks of			
amide II $\left(\mathrm{cm}^{-1}\right)$			

