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1  Phase Behavior of TCs

As shown in Fig. S1, as number density increases the system goes from isotropic to square phase via 
an intermediate tetratic-like phase which is observed for 0.64 < η* < 0.72 and characterized by ψ4 and 
P4 approximately in the range 0.4-0.8, and 0.3-0.45 respectively. Like in cubes, the intermediate phase 
forms diffuse S(k) peaks and has liquid like long-range g(r) behavior (see Fig. S2). Also, similar 
differences ensue for both cubes and TCs in comparing their confined self-assembly in 2D with the 
bulk self-assembly in 3DS1.

The value of ηcrys is estimated as 0.745.
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Fig. S1 Equation of state for 1600 TCs 
obtained by expansion runs. Legend as in 
Fig. 1 of main text.

Fig. S2 (Top Panel) Representative 
snapshots and corresponding structure 
factors for a system of N=3600 TCs at (left) 
P*= 8.1(tetratic-like phase) and (right) P* = 
21.0 (square phase). (Bottom Panel) The 
radial distribution function for a system of 
N = 3600 TCs at the same two pressures.
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2  Two-Body potentials of mean force (PMFs)

The one-dimensional potential of mean force is defined asS2

(1)PMF (r)  ln eU (r ) 
where β =1/(kBT) and U(r) is the potential energy of interaction between two particles whose centers of 
mass are at a distance r.  The procedure of calculating PMF(r) involves placing a particle at random 
position and orientation with center to center distance r from another particle with random orientation. 
This step is followed by an overlap check using separating axes theoremS3. The above procedure is 
repeated for 104 different positions for each value of r and 104 combinations of random orientations of 
the two particles for each position. The fraction of non-overlapping configurations at each value of r 
corresponds to the average Boltzmann’s factors in Eq. (1). Figure S3 shows obtained PMF(r) for 
different shapes where we set r =1 for the closest distance.

We also obtain the two-dimensional potential of mean force defined as
(2)PMF (x, y)  ln eU ( x ,y ) 

where U(x,y) is the potential energy of interaction between two particles whose centers of mass are at a 
distance of x and y from each other. These distances are defined relative to a coordinate frame whose 
origin is the center of mass of a particle with fixed position and orientation, and whose axes are 
perpendicular to the {100} facets of the fixed particle. For convenience, the fixed particle is oriented in 
a way that one of the {100} facets of a particle is parallel to the flat interface. The procedure of 
calculating this PMF(x,y) involves placing a particle at a random orientation with position (x,y) from 
the fixed particle followed by an overlap check. This step is repeated for 104 different orientations for 
each position. Similar to PMF(r), the fraction of non-overlapping configurations at values of (x,y) 
corresponds to the average Boltzmann’s factors in Eq. (2). Figure S4 shows the contour plots of 
PMF(x,y) where for each shape we make the x and y  distances dimensionless by dividing their values 
by the closest distance [which was obtained from PMF(r) and corresponds to the particle indiameter 
in].

Fig. S3 One-dimensional potential of mean force, PMF(r) for different shapes studied in this work.



Fig. S4 Two-dimensional potential of mean force, PMF(x,y) for different shapes studied in this work. 
The colorbar varies from βPMF(x,y) = 0 to 5. The values of βPMF(x,y) > 5 are labeled as red.

3  Adsorption Energy

We apply a model used in Refs. S4 and S5 to estimate the adsorption energy of a single particle on a 
fluid-fluid flat interface. The adsorption energy, F of a truncated cube as a function of its position and 
orientation is given by 

(3)F (z,,)   tb (A Stb )1tS1t 2tS2t 1bS1b 2bS2b  const.
Here, γtb is the interfacial tension between the top and bottom fluid, A is the total surface area of the 
interface and Stb is the interfacial area excluded due to the presence of a particle. The surface tension 
between particle’s facets of type i (i = 1,2 for {100} and {111} facets respectively) and top fluid is 
denoted by γit and the surface tension between particle facets of type i and bottom fluid is denoted by 
γib. The surface areas of facets of type i in the bottom and top medium are denoted by Sit and Sib 
respectively. The value of the arbitrary additive constant is chosen such that F = 0 when a particle is 
completely immersed in the bottom fluid. The position or immersion depth of a particle, z, is the height 
of its center of mass relative to an interface, which is parallel to the xy plane with its normal pointing in 
the z-axis direction and positioned at z = 0. The orientation of a truncated cube is given by two angles: 
the polar angle δ and the azimuthal angle ω. As shown in Ref. S4, using the Young’s equation, Eq. 3 is 
simplified to 

(4)F (z,, )   tb(cos1S1t  cos2S2t  S12 )
where θi is the contact angle corresponding to the three-phase contact between facet of type i, top fluid 
and bottom fluid. To obtain F for (experimentally relevant) contact angle values of θ1 and θ2 for any 
given (z, δ, ω), the surface areas Sit, Sib and Stb are estimated using the triangular tessellation technique 
described in Ref. S6. The three dimensional landscape of adsorption/interfacial energy is then obtained 
by repeating the procedure for all possible orientations and positions, where we vary, z within (-H,H) 
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where H is a value slightly larger than the circumradius of a shape (for TC4 we use H as the largest 
circumscribing radius), δ from [0,π/2], and ω from [0,π/4] using 100 equidistant steps for each of these 
three parameters. Due to the symmetry properties of a truncated cube, the polar angle and azimuthal 
angle are varied up to π/2 and π/4 respectively. The most stable configuration is then obtained by 
estimating the global minimum of this landscape and the value of F corresponding to the global 
minimum is denoted as Fminglob. The model also provides the interfacial energy, Fmin(z) of a particle as 
a function of z minimized with respect to angles δ and ω. The estimation of Fmin(z) at different values 
of z is performed for a cube shaped particle of size 3 nm adsorbing on a toluene-air interface at room 
temperature. The value of interfacial tension, γtb is given by 28.52 mN/m (room temperature). The 
profile of Fmin(z) versus z is shown for different contact angles ranging from cosθ1 = 0.0 to cosθ1 = 0.5 
in Fig. S5.

Fig. S5 The profile of Fmin(z) versus z for a cube shaped particle for different contact angles ranging 
from cosθ1 = 0.0 to cosθ1 = 0.5 (as per numbers in the inside legend) .

For cosθ1 = 0.0 and cosθ2 = 0.0, we show the difference ΔForient(δ, ω) = F(zopt, δ, ω) - Fminglob as a 
function δ and ω for different shapes in Fig. S6, where the value, zopt is the immersion depth of the 
most stable configuration. For the plots shown in Fig. S6, the cube size is 3 nm whereas the size of the 
other shapes is selected to have the same surface area as that of the 3 nm cube. For each shape, we also 
show in Fig. 6 snapshots of three different configurations whose ΔForient <= 5kBT. We also obtain the 
percentage of angular phase space, Porient, that has ΔForient <= 5kBT; this is estimated by evaluating 
ΔForient over a grid of  (δ, ω) pairs and finding the fraction for which ΔForient <= 5kBT. 
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Fig. S6 The energy difference, ΔForient as a function of δ and ω for (a) cube, (b) TC, (c) TC4, (d) CO, 
(e) TO and (f) Oct at contact angle values of θ1 = 90 degrees and θ2 = 90 degrees. The snapshots of 
configurations at three different (δ, ω) values with ΔForient <= 5kBT are also shown for each shape (the 
interface plane, perpendicular to the plane of the page, appears as a horizontal line, and for the particles 
the {100} facets are colored red and the {111} facets are green).
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