ENTROPIC SELF-ASSEMBLY OF FREELY ROTATING POLYHEDRAL PARTICLES CONFINED TO A FLAT INTERFACE

(SUPPLEMENTARY INFORMATION)

V. Thapar, T. Hanrath, and F. A. Escobedo*
School of Chemical and Biomolecular Engineering, Cornell University Ithaca New York 14853

1 Phase Behavior of TCs

As shown in Fig. S1, as number density increases the system goes from isotropic to square phase via an intermediate tetratic-like phase which is observed for $0.64<\eta^{*}<0.72$ and characterized by ψ_{4} and P_{4} approximately in the range $0.4-0.8$, and 0.3-0.45 respectively. Like in cubes, the intermediate phase forms diffuse $S(\mathbf{k})$ peaks and has liquid like long-range $g(r)$ behavior (see Fig. S2). Also, similar differences ensue for both cubes and TCs in comparing their confined self-assembly in 2D with the bulk self-assembly in $3 \mathrm{D}^{\mathrm{S1}}$.

Fig. S1 Equation of state for 1600 TCs obtained by expansion runs. Legend as in Fig. 1 of main text.

Fig. S2 (Top Panel) Representative snapshots and corresponding structure factors for a system of $N=3600$ TCs at (left) $P^{*}=8.1$ (tetratic-like phase) and (right) $P^{*}=$ 21.0 (square phase). (Bottom Panel) The radial distribution function for a system of $N=3600$ TCs at the same two pressures.

2 Two-Body potentials of mean force (PMFs)

The one-dimensional potential of mean force is defined as ${ }^{52}$

$$
\begin{equation*}
\beta P M F(r)=-\ln \left(\left\langle e^{-\beta U(r)}\right\rangle\right) \tag{1}
\end{equation*}
$$

where $\beta=1 /\left(k_{B} T\right)$ and $U(r)$ is the potential energy of interaction between two particles whose centers of mass are at a distance r. The procedure of calculating $\operatorname{PMF}(r)$ involves placing a particle at random position and orientation with center to center distance r from another particle with random orientation. This step is followed by an overlap check using separating axes theorem ${ }^{\mathrm{S} 3}$. The above procedure is repeated for 10^{4} different positions for each value of r and 10^{4} combinations of random orientations of the two particles for each position. The fraction of non-overlapping configurations at each value of r corresponds to the average Boltzmann's factors in Eq. (1). Figure S3 shows obtained PMF(r) for different shapes where we set $r=1$ for the closest distance.

We also obtain the two-dimensional potential of mean force defined as

$$
\begin{equation*}
\beta P M F(x, y)=-\ln \left(\left\langle e^{-\beta U(x, y)}\right\rangle\right) \tag{2}
\end{equation*}
$$

where $U(x, y)$ is the potential energy of interaction between two particles whose centers of mass are at a distance of x and y from each other. These distances are defined relative to a coordinate frame whose origin is the center of mass of a particle with fixed position and orientation, and whose axes are perpendicular to the $\{100\}$ facets of the fixed particle. For convenience, the fixed particle is oriented in a way that one of the $\{100\}$ facets of a particle is parallel to the flat interface. The procedure of calculating this $P M F(x, y)$ involves placing a particle at a random orientation with position (x, y) from the fixed particle followed by an overlap check. This step is repeated for 10^{4} different orientations for each position. Similar to $\operatorname{PMF}(r)$, the fraction of non-overlapping configurations at values of (x, y) corresponds to the average Boltzmann's factors in Eq. (2). Figure S 4 shows the contour plots of $\operatorname{PMF}(x, y)$ where for each shape we make the x and y distances dimensionless by dividing their values by the closest distance [which was obtained from $\operatorname{PMF}(r)$ and corresponds to the particle indiameter $\left.\sigma_{i n}\right]$.

Fig. S3 One-dimensional potential of mean force, $P M F(r)$ for different shapes studied in this work.

Fig. S4 Two-dimensional potential of mean force, $P M F(x, y)$ for different shapes studied in this work. The colorbar varies from $\beta P M F(x, y)=0$ to 5 . The values of $\beta P M F(x, y)>5$ are labeled as red.

3 Adsorption Energy

We apply a model used in Refs. S4 and S5 to estimate the adsorption energy of a single particle on a fluid-fluid flat interface. The adsorption energy, F of a truncated cube as a function of its position and orientation is given by

$$
\begin{equation*}
F(z, \delta, \omega)=\gamma_{t b}\left(A-S_{t b}\right)+\gamma_{1 t} S_{1 t}+\gamma_{2 t} S_{2 t}+\gamma_{1 b} S_{1 b}+\gamma_{2 b} S_{2 b}+\text { const. } \tag{3}
\end{equation*}
$$

Here, $\gamma_{t b}$ is the interfacial tension between the top and bottom fluid, A is the total surface area of the interface and $S_{t b}$ is the interfacial area excluded due to the presence of a particle. The surface tension between particle's facets of type $i(i=1,2$ for $\{100\}$ and $\{111\}$ facets respectively) and top fluid is denoted by $\gamma_{i t}$ and the surface tension between particle facets of type i and bottom fluid is denoted by $\gamma_{i b}$. The surface areas of facets of type i in the bottom and top medium are denoted by $S_{i t}$ and $S_{i b}$ respectively. The value of the arbitrary additive constant is chosen such that $F=0$ when a particle is completely immersed in the bottom fluid. The position or immersion depth of a particle, z, is the height of its center of mass relative to an interface, which is parallel to the $x y$ plane with its normal pointing in the z-axis direction and positioned at $z=0$. The orientation of a truncated cube is given by two angles: the polar angle δ and the azimuthal angle ω. As shown in Ref. S4, using the Young's equation, Eq. 3 is simplified to

$$
\begin{equation*}
F(z, \delta, \beta)=\gamma_{t b}\left(\cos \theta_{1} S_{1 t}+\cos \theta_{2} S_{2 t}-S_{12}\right) \tag{4}
\end{equation*}
$$

where θ_{i} is the contact angle corresponding to the three-phase contact between facet of type i, top fluid and bottom fluid. To obtain F for (experimentally relevant) contact angle values of θ_{1} and θ_{2} for any given (z, δ, ω), the surface areas $S_{i t}, S_{i b}$ and $S_{t b}$ are estimated using the triangular tessellation technique described in Ref. S6. The three dimensional landscape of adsorption/interfacial energy is then obtained by repeating the procedure for all possible orientations and positions, where we vary, z within $(-H, H)$
where H is a value slightly larger than the circumradius of a shape (for TC4 we use H as the largest circumscribing radius), δ from $[0, \pi / 2]$, and ω from $[0, \pi / 4]$ using 100 equidistant steps for each of these three parameters. Due to the symmetry properties of a truncated cube, the polar angle and azimuthal angle are varied up to $\pi / 2$ and $\pi / 4$ respectively. The most stable configuration is then obtained by estimating the global minimum of this landscape and the value of F corresponding to the global minimum is denoted as $F_{\text {minglob }}$. The model also provides the interfacial energy, $F_{\text {min }}(z)$ of a particle as a function of z minimized with respect to angles δ and ω. The estimation of $F_{\min }(z)$ at different values of z is performed for a cube shaped particle of size 3 nm adsorbing on a toluene-air interface at room temperature. The value of interfacial tension, $\gamma_{t b}$ is given by $28.52 \mathrm{mN} / \mathrm{m}$ (room temperature). The profile of $F_{\min }(z)$ versus z is shown for different contact angles ranging from $\cos \theta_{1}=0.0$ to $\cos \theta_{1}=0.5$ in Fig. S5.

Fig. 55 The profile of $F_{\text {min }}(z)$ versus z for a cube shaped particle for different contact angles ranging from $\cos \theta_{1}=0.0$ to $\cos \theta_{1}=0.5$ (as per numbers in the inside legend).

For $\cos \theta_{1}=0.0$ and $\cos \theta_{2}=0.0$, we show the difference $\Delta F_{\text {orient }}(\delta, \omega)=F\left(z_{\text {opt }}, \delta, \omega\right)-F_{\text {minglob }}$ as a function δ and ω for different shapes in Fig. S6, where the value, $z_{\text {opt }}$ is the immersion depth of the most stable configuration. For the plots shown in Fig. S6, the cube size is 3 nm whereas the size of the other shapes is selected to have the same surface area as that of the 3 nm cube. For each shape, we also show in Fig. 6 snapshots of three different configurations whose $\Delta F_{\text {orient }}<=5 k_{B} T$. We also obtain the percentage of angular phase space, $P_{\text {orient }}$, that has $\Delta F_{\text {orient }}<=5 k_{B} T$; this is estimated by evaluating $\Delta F_{\text {orient }}$ over a grid of (δ, ω) pairs and finding the fraction for which $\Delta F_{\text {orient }}<=5 k_{B} T$.

Fig. S6 The energy difference, $\Delta F_{\text {orient }}$ as a function of δ and ω for (a) cube, (b) TC, (c) TC4, (d) CO, (e) TO and (f) Oct at contact angle values of $\theta_{1}=90$ degrees and $\theta_{2}=90$ degrees. The snapshots of configurations at three different (δ, ω) values with $\Delta F_{\text {orient }}<=5 k_{B} T$ are also shown for each shape (the interface plane, perpendicular to the plane of the page, appears as a horizontal line, and for the particles the $\{100\}$ facets are colored red and the $\{111\}$ facets are green).

References:

S1. A. P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, Phys. Rev. Lett., 2013, 111, 015501.
S2. U. Agarwal and F. A. Escobedo, Nat. Mater., 2011, 10, 230-235.
S3. E. G. Golshtein and N. V. Tretyakov, Modified Lagrangians and monotone maps in optimization, Wiley, New York, 1996.
S4. W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, and D.Vanmaekelbergh, Nano Lett., 2013, 13, 2317-2323.

S5. W. van der Stam, A. P. Gantapara, Q. A. Akkerman, G. Soligno, J. D. Meeldijk, R. van Roij, M. Dijkstra, and C. de Mello Donega, Nano Lett., 2014, 14, 1032-1037.
S6. J. de Graaf, M. Dijkstra, and R. van Roij, J. Chem. Phys. 132, 164902 (2010).

