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Supplementary Information 
 

Supplementary Materials and Methods: 

 

Fabrication of substrate with microscale gratings  

The surface structures on the bottom substrate were prepared by micromachining a 

silicon wafer. After patterning parallel stripes of photoresist (AZ5214) with a pitch (i.e., 

periodicity) of 200 µm and solid fractions ϕs varying from 0.2 to 0.8 on a 400-500 µm-

thick, 4-inch, and (100)-type silicon wafer by photolithography, deep reactive ion etching 

(DRIE) was used to form 50 µm-deep trenches into the silicon. After removing the 

photoresist, a layer of 2 µm-thick Teflon® AF 1600 was spin-coated on the wafer to turn 

the entire surface hydrophobic.  

 

Fabrication of top plate with hydrophilic rectangular pattern  

The wetting pattern on the top plate was prepared on a glass slide. After spin-coating a 

photoresist (AZ4620), which is hydrophobic, on a 1 mm-thick plain microscope slide of 

7.6 cm by 2.5cm (Fisher Scientific 12-549-3), a rectangular window of 2.5 mm by 15 mm 

was opened by photolithography to expose the underlying hydrophilic glass surface. 

 

Dynamic contact angle measurements 

As illustrated in Fig. 2, the superhydrophobic silicon substrate was mounted on a moving 

stage, while the glass top plate was stationary and held the droplet at a fixed position 

always visible to the camera. As the substrate slid to the left, the water droplet traversed 

the line patterns on the substrate to the right (relatively). During the droplet sliding, both 

advancing and receding contact angles could be captured. By aligning the viewing 

direction parallel to the line pattern and perpendicular to the moving direction, the 

captured images of contact line motion was maintained close to a 2-D condition. In order 

to observe details of contact line motion, which includes jumping from one surface 

structure to the next in a near 2-D condition, a high-speed camera (Vision Research 

Phantom V7.2) was employed at a rate up to 6000 frames per second (fps). 
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Supplementary Discussions with Figures S1-S5 and Table S1: 

 

Local contact angles during 2-D contact-line receding  

Figure S1 shows the local (i.e., microscopic) contact angle of a receding 2-D contact line 

measured over time in two different time scales, adapted from Chen24. The left graph 

shows around 4 cycles (captured at 300 fps), illustrating the discontinuous nature of the 

contact line receding on a structured surface. Similar plots have been reported based on 

simulation results36,37, which described periodic “stick-slip-jump” contact line motions. 

Using a much smaller time scale captured at 6000 fps, the right graph shows one cycle to 

provide more details when the receding contact line jumps. The sudden increase in the 

contact angle represents the receding contact line being detached from one structure and 

pinned on the next structure.  

 

 
Figure S1. Local/microscopic receding contact angle as a function of time measured 

from high-speed images of 2-D contact-line receding. 

 

Influence of the top plate distance on the recovery of the apparent contact angle 

Figure S2 illustrates how the apparent angle recovery, i.e., the stage 4 observed in the 

experiment, would vanish if the top plate were placed far away to represent a true (albeit 

imaginary) 2-D scenario. The figure considers a top plate placed at three different 

distances z1, z2, and z∞ from the substrate and ignores the microscopic details to focus on 
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the apparent contact angles the menisci form between the top plates and bottom substrate 

(blue lines). Starting from the initial meniscus with θR
*  (blue solid line) common to all 

three plate distances of z1, z2, and z∞, the contact lines would slide and jump to the next 

structure, resulting in three new menisci (blue dotted lines) marked as ①, ②, and ∞, 

respectively. Because the menisci would be pinned at different heights z1 < z2 < z∞, we 

would have θ1
* >θ2

* >θ
∞
* =θR

*
. In other words, if the top plate were placed farther away 

from the microstructured surface, the apparent angle of the meniscus pinned on the top 

plate would deviate less from the apparent receding angle on structured surface at the 

bottom. If the top plate were infinitely far away (i.e., the true 2-D case), the deviation 

would wane and recovery stage (i.e., stage 4 observed in experiment) would vanish. 

 

 

Figure S2. Illustration to show the meniscus pinned on the top plate causes the apparent 

contact angle to be different from the apparent receding angle. Because in practice the top 

plate is placed at a finite distance from the structured surface at the bottom, i.e., z = z1 or 

z2, the apparent angle increases when the meniscus jumps to the next structure, i.e., from 

the blue solid line to the blue dashed lines. This increase of the apparent angle by the 

meniscus jumping would diminish as the top plate is placed farther away, so that for z = 

z∞ the apparent angle would stay the same as the apparent receding angle.   
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Definition and calculation of line solid fraction 

In analogy to the areal solid fraction ϕs defined by Cassie and Baxter1, i.e., the ratio of 

real solid-liquid (two-phase) contact area to the apparent (projected) area, we define the 

line solid fraction  λs  to be the ratio of real solid-liquid-air (three-phase) contact line   ls
  to 

the apparent (projected) line l, as follows:  

 
  
λs =

ls


l  (S1) 

Because the period of the contact line pinned on the solid (measured to be ~97% of time 

in the 2-D experiment) dominates the period of sliding on solid and air (measured to be 

~3% of time in the 2-D experiment), the real contact line   ls
  is determined by the contact 

line pinned on microstructures. Figure S3 depicts the contact line of a droplet receding on 

a square array of circular posts. The apparent/projected/macroscopic contact line of a 

sessile drop is circular on the structured surface (dashed red line on the right inset), while 

the real/local/microscopic contact line is intermittent and contorted (solid blue line in the 

left inset).  

 

 

Figure S3. Line solid fraction defined as the ratio of the real contact line on solid (  ls
 : 

blue solid lines in the inset) to the apparent contact line of the liquid on the structured 

surface (l: red dashed line). The figure shows the case of a sessile drop sliding on a 

square array of circular posts. 

 

Normally it would be very difficult to calculate the real contact line and the apparent 

contact line exactly, because the relative size of the droplet and the microstructures also 
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affect their values. Furthermore, in the real world that is 3-D in nature, the local motion at 

each point of the contact line is affected by the neighboring points, and therefore the line 

solid fraction should be averaged over the contact line length of interest. Let us consider a 

segment of apparent contact line that forms angle β to the horizon (Fig. S4), and suppose 

the contact line is moving in direction   v


, which forms angle ψ to the segment. Assuming 

the droplet is much larger than the microstructures (so that β is considered constant over 

multiple segments), the line solid fraction can be calculated as a spatial (i.e., angular) 

average of the line solid fraction of all segments over the contact line length of our 

interest, e.g., a circle for an entire spherical drop:  

 
  
λs =

1
βt

λs(β )sinψ dβ
0

βt∫  (S2) 

In the above equation,   λs(β )  is the ratio of the real contact line to the structural pitch at 

angle β, and sinψ accounts for the contact line resistance normal to the apparent contact 

line. The range of angle to be considered βt is determined by the motion the contact line 

undergoes with. For the above case of Fig. S3, all the segments of the apparent contact 

line move towards the center of the droplet so that ψ = π/2 and βt = 2π, and we have: 

 
  
λs =

1
2π

λs(β )dβ
0

2π

∫  (S3) 

However, for the cases of receding by droplet sliding, the segments of the tailing half of 

the apparent contact line recede with varying ψ so that βt = π and ψ = β, and we have:  

 
  
λs =

1
π

λs(β )sinβ dβ
0

π

∫  (S4) 

 

 
Figure S4. Contact line segment at angle β moving with angle ψ to the contact line  
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Table S1 presents  λs  derived for the various microstructures and receding conditions 

found in the literature. The averaged expression was simplified if there was symmetry in 

the considered range. Consider the case shown in Figs. S3 and S4 (i.e., Xu et al.31 in 

Table S1) as an example, where all the segments of the apparent contact line of the 

droplet are receded by subtraction on a square array of circular posts. For one segment, 

the real contact line on solid is πD, and the effective pitch is P/cosβ for 0 < β < π/4 and 

P/sinβ for π/4 < β < π/2. Therefore, the line solid fraction can be calculated as: 

 
  
λs =

2
π

πD
P cosβ

dβ + πD
P sinβ

dβπ
4

π
2∫0

π
4∫

⎛

⎝⎜
⎞

⎠⎟
= 2
π
πD
P

2  (S5) 

Other cases can be derived in similar fashions, and their results are summarized in Table 

S1. For post structures, the real contact line is essentially the perimeter of the structure in 

the segment in consideration while the apparent contact line is the length of the “straight” 

apparent contact line at angle β. For hole structures, however, the real contact line is 

composed of two different cases: some recedes on solid where the receding contact angle 

is  θR , while some recedes across a hole where the receding contact angle is ( θR  – 90°). 

When the circular posts are in a rectangular array19, one of the pitches and its apparent 

contact line termed as kinks19 dominate the receding. When square posts are in a 

diamond-shape array (although the authors called it hexagonal array)13, the smallest 

repeating unit, i.e., a two-pitch by one-pitch rectangle, is considered.  
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Table S1. Line solid fraction  λs  used in Fig. 7 for different structures and receding conditions 

 Receding 
conditions 

Contact line  
segment  

Line solid  
fraction λs 

This  
work  

Sliding  

  λs = 1 

Cassie1 
 

 

 
λs =

W
P  

Xu31 
 

Subtraction  
  
λs =

2
π
πD
P

2  

Gauthier19 
 

Subtraction 
 

  

λs =
2
π

πD

Px
2 + Py

2
tan−1 Py

Px

⎛

⎝
⎜

⎞

⎠
⎟ +

Px

Py

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

Öner13 
 

Subtraction  
  
λs =

2
π

4W
P

5  

Dufour7 
 

Sliding  
  
λs =

2
π
πD
P

1
2
+ π

8
⎛
⎝⎜

⎞
⎠⎟
 

Priest12 

 
Sliding  

  
λs =

2
π

4W
P

1
2
+ π

8
⎛
⎝⎜

⎞
⎠⎟
 

 
Sliding  

  
λs1

= W
πP

,  θR1
= θR − 90°,  θY1
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λs2

= 2
π

P −W
P

+ 3W
2P

+ 3W
4P

π
2
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⎞
⎠⎟

,  θR2
= θR ,  θY2
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Comparison of experimental 3-D data in the literature to existing models 

Following Fig. 5, Fig. S5 compares each set of the 3-D data reported in the literature (red 

symbols) with the existing models in the literature (dashed lines) and our model (red solid 

line). The CB model for the static case is also included as a reference. While many 

existing models fit a certain set of experimental data, none of them fits all the data. In 

contrast, our model (i.e., Eq. 10 for gratings and posts and Eq. 11 for holes) fits all the 

data, giving a consistently good prediction of apparent receding contact angles regardless 

of the type and pattern of the surface structures and the condition of droplet moving. 

 
Figure S5. Experimental data (red symbols) of apparent receding contact angles in the 

literature, (a) Cassie1 (b) Xu31, (c) Gauthier19, (d) Öner13, (e) Dufour7, (f) Priest12, and (g) 

holes in Priest12, each compared with the original and modified CB models in the 

literature (dashed lines) and the modified CB model of this paper (red solid line). For 

each figure, the model predictions were calculated from the experimental conditions used 

to obtain the data according to the reference. Only the model in this paper predicts all the 

experimental data consistently well.  
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Figure S5 warrants more details of how they were produced. For Fig. S5(a) (i.e., Cassie1), 

their model coincided with our Eq. 10, so they formed two overlapping lines. For Fig. 

S5(b) (i.e., Xu31), Eq. 8 was drawn using their experimentally measured static contact 

angle instead of theoretical values calculated from the CB model. For Fig S5(c) (i.e., 

Gauthier19), the graphs include only the prediction of rectangular arrays reported in their 

paper, because the solid fraction is controlled by two different pitches. For Fig. S5(d) (i.e., 

Öner13), the line fraction for the Extrand model3 has only been given explicitly for such 

hexagonally-packed array. Lacking a general formula for other cases, a simple 

differential line fraction4 was adopted for Extrand model in all other subfigures in Fig. S5. 

For Fig. S5(g), Eq. 11 (more generalized than Eq. 10) was used to predict apparent 

receding contact angles on hole structures.  
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Table S2. Summary of the models included in Fig. 5 and Fig. S5 for comparison 

 Approach Theoretical expression Notes 

This    
work 

Static apparent contact 
angle plus the time-

average frictions acting 
on the TCL 

cosθR
* = cosθ * +

cosθRi
− cosθYi( )λs

i
∑  

cosθ *  is the static apparent 
contact angle given by the general 
Cassie equation φi cosθYi

i
∑ . 

Cassie1 
Linear average of 
contact angles on 

contact areas 
cosθR

* = φs cosθR −φg   

θR is the receding angle on solid; 
ϕs and ϕg are the solid and gas 
fraction determined by the 
advancing case. 

Extrand3 
Linear average of 

contact angles along 
TCL 

θR
* = λpθR + 1− λp( )θair  

θair = 180°; λp is the linear fraction 
of the contact line on asperities; 
the ideal Cassie state (ϕs + ϕg = 1) 
is assumed. 

Choi4 
Larsen16 

Linear average of 
cosines of contact 
angles along TCL 

cosθR
* = rφφd cosθY +

1−φd( )cosθ2
 

θY is the Young’s angle on solid; 
ϕd is the differential area fraction 
at the receding meniscus; rϕ is the 
roughness coefficient for the 
liquid-solid interface; θ2 = 180° 
(stripes, posts) or 0° (holes). 

Raj5 

Linear average of 
cosines of receding 
contact angles along 

TCL 

cosθR
* = φmax cosθR − 1−φmax( )  

ϕmax = D/P for receding on posts 
(D is diameter and P is pitch); ϕmax 
= 1 for receding on holes. 

Reyssat6 Lateral deformation of 
the receding meniscus cosθR

* − cosθA
* = a

4
φs ln

π
φs

⎛
⎝⎜

⎞
⎠⎟

 
a = 3.8 best fitted to data in Ref. 6; 
In theory, a = 2; ϕs is the solid 
fraction;θA

*  = 180°. 

Patankar25 Liquid layer left on the 
receded structures cosθR

* = 2φs −1  
Original Cassie-Baxter equation 
with θR = 0° and assuming the 
ideal Cassie state (ϕs + ϕg = 1). 
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Supplemental Movie S1-S3: 

MOVIE S1. Receding meniscus motion on structured surface (ϕs = 0.5) captured at 300 

fps and replayed 40 times slower at 7.5 fps. (Quicktime, 1.1 MB) 

MOVIE S2. Receding meniscus motion on structured surface (ϕs = 0.5) captured at 6000 

fps and replayed 1000 times slower at 6 fps. (Quicktime, 639 KB) 

MOVIE S3. Animation of evolution of the receding meniscus on structured surface (ϕs = 

0.5) combing meniscus detected from high-speed images in MOVIE S1-2) 

(Quicktime, 563 KB) 
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